Dr. Christian Otto

Publications in reversed chronological order. Generated by jekyll-scholar.

Number of publications: 17

2023

  1. [1]
    G. S. Cheema, S. Hakimov, E. Müller-Budack, C. Otto, J. A. Bateman, and R. Ewerth:
    Understanding Image-Text Relations and News Values for Multimodal News Analysis
    Frontiers in Artificial Intelligence, 6, pp. 1–29. Frontiers, 2023.
    https://doi.org/10.3389/frai.2023.1125533
  2. [2]
    W. Gritz, C. Otto, A. Hoppe, G. Pardi, Y. Kammerer, and R. Ewerth:
    Comparing Interface Layouts for the Presentation of Multimodal Search Results
    In: ACM SIGIR Conference on Human Information Interaction and Retrieval, CHIIR 2023, Austin, TX, USA, March 19-23, 2023, pp. 321–327. ACM, 2023.
    https://doi.org/10.1145/3576840.3578335
  3. [3]
    C. Otto:
    Automatic Understanding of Multimodal Content for Web-based Learning
    Gottfried Wilhelm Leibniz Universität Hannover, pp. 1–189, 2023.
    https://doi.org/https://doi.org/10.15488/13887

2022

  1. [1]
    G. S. Cheema, S. Hakimov, A. Sittar, E. Müller-Budack, C. Otto, and R. Ewerth:
    MM-Claims: A Dataset for Multimodal Claim Detection in Social Media
    In: Findings of the Association for Computational Linguistics: NAACL 2022, Seattle, WA, United States, July 10-15, 2022, pp. 962–979. Association for Computational Linguistics, 2022.
    https://doi.org/10.18653/v1/2022.findings-naacl.72
  2. [2]
    C. Otto, M. Rokicki, G. Pardi, W. Gritz, D. Hienert, R. Yu, J. Hoyer, A. Hoppe, S. Dietze, P. Holtz, Y. Kammerer, and R. Ewerth:
    SaL-Lightning Dataset: Search and Eye Gaze Behavior, Resource Interactions and Knowledge Gain during Web Search
    In: ACM SIGIR Conference on Human Information Interaction and Retrieval, CHIIR 2022, Regensburg, Germany, March 14 - 18, 2022, pp. 347–352. ACM, 2022.
    https://doi.org/10.1145/3498366.3505835
  3. [3]
    C. Otto, M. Stamatakis, A. Hoppe, and R. Ewerth:
    Predicting Knowledge Gain for MOOC Video Consumption
    In: International Conference on Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium, AIED 2022, Durham, UK, July 27-31, 2022, pp. 458–462. Springer, 2022.
    https://doi.org/10.1007/978-3-031-11647-6_92
  4. [4]
    J. Hoyer, A. Hoppe, Y. Kammerer, C. Otto, G. Pardi, M. Rokicki, R. Yu, S. Dietze, R. Ewerth, and P. Holtz:
    The Search as Learning Spaceship: Toward a Comprehensive Model of Psychological and Technological Facets of Search as Learning
    Frontiers in Psychology, 13. Frontiers Media SA, 2022.
    https://doi.org/10.3389/fpsyg.2022.827748

2021

  1. [1]
    R. Ewerth, C. Otto, and E. Müller-Budack:
    Computational Approaches for the Interpretation of Image-text Relations
    Empirical Multimodality Research: Methods, Evaluations, Implications, pp. 109–138. De Gruyter, 2021.
    https://doi.org/10.1515/9783110725001-005
  2. [2]
    C. Otto, R. Yu, G. Pardi, J. Hoyer, M. Rokicki, A. Hoppe, P. Holtz, Y. Kammerer, S. Dietze, and R. Ewerth:
    Predicting Knowledge Gain During Web Search Based on Multimedia Resource Consumption
    In: International Conference on Artificial Intelligence in Education, AIED 2021, Utrecht, The Netherlands, June 14-18, 2021, pp. 318–330. Springer, 2021.
    https://doi.org/10.1007/978-3-030-78292-4_26

2020

  1. [1]
    C. Otto, M. Springstein, A. Anand, and R. Ewerth:
    Characterization and Classification of Semantic Image-Text Relations
    International Journal of Multimedia Information Retrieval, 9(1), pp. 31–45, 2020.
    Invited Paper (Best Papers of ACM ICMR 2019)
    https://doi.org/10.1007/s13735-019-00187-6

2019

  1. [1]
    C. Otto, M. Springstein, A. Anand, and R. Ewerth:
    Understanding, Categorizing and Predicting Semantic Image-Text Relations
    In: International Conference on Multimedia Retrieval, ICMR 2019, Ottawa, ON, Canada, June 10-13, 2019, pp. 168–176. ACM, 2019.
    Best Paper Award
    https://doi.org/10.1145/3323873.3325049
  2. [2]
    J. Shi, C. Otto, A. Hoppe, P. Holtz, and R. Ewerth:
    Investigating Correlations of Automatically Extracted Multimodal Features and Lecture Video Quality
    In: International Workshop on Search as Learning with Multimedia Information, SALMM 2019, pp. 11–19. ACM, 2019.
    https://doi.org/10.1145/3347451.3356731
  3. [3]
    H. Zhou, C. Otto, and R. Ewerth:
    Visual Summarization of Scholarly Videos Using Word Embeddings and Keyphrase Extraction
    In: International Conference on Theory and Practice of Digital Libraries, TPDL 2019, Oslo, Norway, September 9-12, 2019, pp. 327–335. Springer, 2019.
    https://doi.org/10.1007/978-3-030-30760-8__28
  4. [4]
    C. Otto, S. Holzki, and R. Ewerth:
    Is This an Example Image? - Predicting the Relative Abstractness Level of Image and Text
    In: European Conference on Information Retrieval, ECIR 2019, Cologne, Germany, April 14-18, 2019, pp. 711–725. Springer, 2019.
    https://doi.org/10.1007/978-3-030-15712-8_46

2018

  1. [1]
    J. Medrek, C. Otto, and R. Ewerth:
    Recommending Scientific Videos Based on Metadata Enrichment Using Linked Open Data
    In: International Conference on Theory and Practice of Digital Libraries, TPDL 2018, Porto, Portugal, September 10-13, 2018, pp. 286–292. Springer, 2018.
    https://doi.org/10.1007/978-3-030-00066-0_25

2017

  1. [1]
    M. Mühling, N. Korfhage, E. Müller, C. Otto, M. Springstein, T. Langelage, U. Veith, R. Ewerth, and B. Freisleben:
    Deep learning for content-based video retrieval in film and television production
    Multimedia Tools and Applications, 76(21), pp. 22169–22194, 2017.
    https://doi.org/10.1007/s11042-017-4962-9

2016

  1. [1]
    E. Müller, C. Otto, and R. Ewerth:
    Semi-supervised Identification of Rarely Appearing Persons in Video by Correcting Weak Labels
    In: International Conference on Multimedia Retrieval, ICMR 2016, New York, New York, USA, June 6-9, 2016, pp. 381–384. ACM, 2016.
    https://doi.org/10.1145/2911996.2912073