Prof. Dr. Ralph Ewerth

Publications in reversed chronological order. Generated by jekyll-scholar.

Number of publications: 117

2025

  1. [1]
    S. Awale, E. Müller-Budack, and R. Ewerth:
    Patent Figure Classification using Large Vision-language Models
    In: European Conference on Information Retrieval, ECIR 2025, Lucca, Italy, April 6-10, 2025. Springer, 2025.
    Accepted for Publication
  2. [2]
    W. Gritz, A. Hoppe, and R. Ewerth:
    Unraveling the Impact of Visual Complexity on Search as Learning
    In: European Conference on Information Retrieval, ECIR 2025, Lucca, Italy, April 6-10, 2025. Springer, 2025.
    Accepted for Publication
  3. [3]
    S. Tahmasebi, E. Müller-Budack, and R. Ewerth:
    Verifying Cross-modal Entity Consistency in News using Vision-language Models
    In: European Conference on Information Retrieval (ECIR) 2025, Lucca, Itay, April 06-10, 2025, 2025.
    Accepted for Publication

2024

  1. [1]
    E. Entrup, R. Ewerth, and A. Hoppe:
    Can Editorial Decisions Impair Journal Recommendations? Analysing the Impact of Journal Characteristics on Recommendation Systems
    In: ACM Conference on Recommender Systems, RecSys 2024, Bari, Italy, October 14-18, 2024, pp. 1062–1066. ACM, 2024.
    https://doi.org/10.1145/3640457.3688194
  2. [2]
    W. Gritz, A. Hoppe, and R. Ewerth:
    On the Influence of Reading Sequences on Knowledge Gain During Web Search
    In: European Conference on Information Retrieval, ECIR 2024, Glasgow, UK, March 24-28, 2024, pp. 364–373. Springer, 2024.
    https://doi.org/10.1007/978-3-031-56063-7_28
  3. [3]
    G. S. Cheema, J. Arafat, C. Tseng, J. A. Bateman, R. Ewerth, and E. Müller-Budack:
    Identification of Speaker Roles and Situation Types in News Videos
    In: International Conference on Multimedia Retrieval, ICMR 2024, Phuket, Thailand, June 10-14, 2024, pp. 506–514. ACM, 2024.
    Best Paper Award
    https://doi.org/10.1145/3652583.3658101
  4. [4]
    C. Tseng, J. A. Bateman, L. Thiele, R. Ewerth, E. Müller-Budack, G. Cheema, M. Burghardt, and B. Liebl:
    The search for filmic narrative strategies in audiovisual news reporting: a progress report
    In: Conference of the Society for Cognitive Studies of the Moving Image, SCSMI 2024, Budapest, Hungary, June 5-8, 2024, 2024.
  5. [5]
    E. Müller-Budack, M. Springstein, M. Plank, J. Sittel, R. Mauer, O. Bulgakowa, M. Burghardt, J. A. Bateman, and R. Ewerth:
    TIB AV-Analytics: A Computational Tool for Film and Video Analysis
    In: Conference of the Society for Cognitive Studies of the Moving Image, SCSMI 2024, Budapest, Hungary, June 5-8, 2024, 2024.
  6. [6]
    E. Müller-Budack, W. Gritz, and R. Ewerth:
    Video Data
    Computer Science in Sport: Modeling, Simulation, Data Analysis and Visualization of Sports-Related Data, pp. 27–34. Springer Berlin Heidelberg, 2024.
    https://doi.org/10.1007/978-3-662-68313-2_4
  7. [7]
    A. Brack, E. Entrup, M. Stamatakis, P. Buschermöhle, A. Hoppe, and R. Ewerth:
    Sequential sentence classification in research papers using cross-domain multi-task learning
    International Journal on Digital Libraries, 2024.
    https://doi.org/10.1007/s00799-023-00392-z
  8. [8]
    M. Roski, R. Ewerth, A. Hoppe, and A. Nehring:
    Exploring Data Mining in Chemistry Education: Building a Web-Based Learning Platform for Learning Analytics
    Journal of Chemical Education, 101(3), pp. 930–940. American Chemical Society, 2024.
    https://doi.org/10.1021/acs.jchemed.3c00794
  9. [9]
    M. Roski, R. Sebastian, R. Ewerth, A. Hoppe, and A. Nehring:
    Learning analytics and the Universal Design for Learning (UDL): A clustering approach
    Computers & Education, 214, pp. 105028, 2024.
    https://doi.org/10.1016/j.compedu.2024.105028
  10. [10]
    E. Navarrete, R. Ewerth, and A. Hoppe:
    Saliency Detection in Educational Videos: Analyzing the Performance of Current Models, Identifying Limitations and Advancement Directions
    In: ACM International Conference on Information and Knowledge Management, CIKM 2024, Boise, Idaho, United States of America, October 21-25, 2024, 2024.
    Accepted for Publication
  11. [11]
    M. Springstein, S. Schneider, J. Rahnama, J. Stalter, M. Kristen, E. Müller-Budack, and R. Ewerth:
    Visual Narratives: Large-scale Hierarchical Classification of Art-historical Images
    In: IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2024, Waikoloa, HI, USA, January 3-8, 2024, pp. 7195–7205. IEEE, 2024.
    https://doi.org/10.1109/WACV57701.2024.00705
  12. [12]
    J. Berger, J. Koß, M. Stamatakis, A. Hoppe, R. Ewerth, and C. Wartena:
    Question Generation Capabilities of “Small" Large Language Models
    In: International Conference on Natural Language & Information Systems, NLDB 2024, Turin, Italy, June 25-27, 2024. Springer, 2024.
    Accepted for Publication
  13. [13]
    G. Tahmasebzadeh, M. Springstein, R. Ewerth, and E. Müller-Budack:
    Few-Shot Event Classification in Images using Knowledge Graphs for Prompting
    In: IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2024, Waikoloa, HI, USA, January 3-8, 2024, pp. 7271–7280. IEEE, 2024.
    https://doi.org/10.1109/WACV57701.2024.00712
  14. [14]
    S. Tahmasebi, E. Müller-Budack, and R. Ewerth:
    Multimodal Misinformation Detection using Large Vision-Language Models
    In: ACM International Conference on Information and Knowledge Management, CIKM 2024, Boise, ID, USA, October 21-25, 2024, pp. 2189–2199. ACM, 2024.
    https://doi.org/10.1145/3627673.3679826

2023

  1. [1]
    G. S. Cheema, S. Hakimov, E. Müller-Budack, C. Otto, J. A. Bateman, and R. Ewerth:
    Understanding Image-Text Relations and News Values for Multimodal News Analysis
    Frontiers in Artificial Intelligence, 6, pp. 1–29. Frontiers, 2023.
    https://doi.org/10.3389/frai.2023.1125533
  2. [2]
    J. A. Ghauri, E. Müller-Budack, and R. Ewerth:
    Classification of Visualization Types and Perspectives in Patents
    In: International Conference on Theory and Practice of Digital Libraries, TPDL 2023, Zadar, Croatia, September 26-29, 2023, pp. 182–191. Springer, 2023.
    https://doi.org/10.1007/978-3-031-43849-3_16
  3. [3]
    E. Müller-Budack, W. Gritz, and R. Ewerth:
    Reale Datensätze – Videodaten
    Sportinformatik : Modellbildung, Simulation, Datenanalyse und Visualisierung von sportbezogenen Daten, pp. 31–38. Springer Berlin Heidelberg, 2023.
    https://doi.org/10.1007/978-3-662-67026-2_4
  4. [4]
    H. Biermann, R. Komitova, D. Raabe, E. Müller-Budack, R. Ewerth, and D. Memmert:
    Synchronization of passes in event and spatiotemporal soccer data
    Scientific Reports, 13(1), pp. 15878, 2023.
    https://doi.org/10.1038/s41598-023-39616-2
  5. [5]
    M. Roski, R. Sebastian, R. Ewerth, A. Hoppe, and A. Nehring:
    Dropout Prediction in a Web Environment Based on Universal Design for Learning
    In: International Conference on Artificial Intelligence in Education, AIED 2023, Tokyo, Japan, July 3-7, 2023,, pp. 515–527. Springer, 2023.
    https://doi.org/10.1007/978-3-031-36272-9_42
  6. [6]
    W. Gritz, C. Otto, A. Hoppe, G. Pardi, Y. Kammerer, and R. Ewerth:
    Comparing Interface Layouts for the Presentation of Multimodal Search Results
    In: ACM SIGIR Conference on Human Information Interaction and Retrieval, CHIIR 2023, Austin, TX, USA, March 19-23, 2023, pp. 321–327. ACM, 2023.
    https://doi.org/10.1145/3576840.3578335
  7. [7]
    E. Entrup, R. Ewerth, and A. Hoppe:
    A Comparison of Automated Journal Recommender Systems
    In: International Conference on Theory and Practice of Digital Libraries, TPDL 2023, Zadar, Croatia, September 26-29, 2023, pp. 230–238. Springer, 2023.
    https://doi.org/10.1007/978-3-031-43849-3_20
  8. [8]
    E. Navarrete, A. Nehring, S. Schanze, R. Ewerth, and A. Hoppe:
    A Closer Look into Recent Video-based Learning Research: A Comprehensive Review of Video Characteristics, Tools, Technologies, and Learning Effectiveness
    arXiv preprint, abs/2301.13617, 2023.
    https://doi.org/10.48550/arXiv.2301.13617
  9. [9]
    E. Entrup, A. Eppelin, R. Ewerth, J. Hartwig, M. Tullney, M. Wohlgemuth, and A. Hoppe:
    Comparing different search methods for the open access journal recommendation tool B!SON
    International Journal on Digital Libraries, 2023.
    https://doi.org/10.1007/s00799-023-00372-3
  10. [10]
    M. Springstein, M. Stamatakis, M. Plank, J. Sittel, R. Mauer, O. Bulgakowa, R. Ewerth, and E. Müller-Budack:
    TIB AV-Analytics: A Web-based Platform for Scholarly Video Analysis and Film Studies
    In: ACM Conference on Research and Development in Information Retrieval, SIGIR 2023, Taipei, Taiwan, July 23-27, 2023, pp. 3195–3199. ACM, 2023.
    https://doi.org/10.1145/3539618.3591820
  11. [11]
    M. Stamatakis, W. Gritz, J. Oldag, A. Hoppe, S. Schanze, and R. Ewerth:
    Automatic Analysis of Student Drawings in Chemistry Classes
    In: International Conference on Artificial Intelligence in Education, AIED 2023, Tokyo, Japan, July 3-7, 2023, pp. 824–829. Springer, 2023.
    https://doi.org/10.1007/978-3-031-36272-9_78
  12. [12]
    G. Tahmasebzadeh, S. Hakimov, R. Ewerth, and E. Müller-Budack:
    Multimodal Geolocation Estimation of News Photos
    In: European Conference on Information Retrieval, ECIR 2023, Dublin, Ireland, April 2-6, 2023, pp. 204–220. Springer, 2023.
    https://doi.org/10.1007/978-3-031-28238-6_14
  13. [13]
    G. Tahmasebzadeh, E. Müller-Budack, S. Hakimov, and R. Ewerth:
    MM-Locate-News: Multimodal Focus Location Estimation in News
    In: International Conference on MultiMedia Modeling, MMM 2023, Bergen, Norway, January 9-12, 2023, pp. 204–216. Springer, 2023.
    https://doi.org/10.1007/978-3-031-27077-2_16
  14. [14]
    S. Tahmasebi, S. Hakimov, R. Ewerth, and E. Müller-Budack:
    Improving Generalization for Multimodal Fake News Detection
    In: ACM International Conference on Multimedia Retrieval, ICMR 2023, Thessaloniki, Greece, June 12-15, 2023, pp. 581–585. ACM, 2023.
    https://doi.org/10.1145/3591106.3592230
  15. [15]
    J. Theiner and R. Ewerth:
    TVCalib: Camera Calibration for Sports Field Registration in Soccer
    In: IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023, Waikoloa, HI, USA, January 2-7, 2023, pp. 1166–1175. IEEE, 2023.
    https://doi.org/10.1109/WACV56688.2023.00122
  16. [16]
    J. Theiner, N. Nommensen, J. Rhotert, M. Springstein, E. Müller-Budack, and R. Ewerth:
    Analyzing Results of Depth Estimation Models With Monocular Criteria
    In: Explainable AI for Computer Vision Workshop co-located with the IEEE/CFV Conference on Computer Vision and Pattern Recognition, XAI4CV@CVPR 2023, Vancouver, Canada, June 19, pp. 3738-3742. IEEE/CVF, 2023.
    https://openaccess.thecvf.com/content/CVPR2023W/XAI4CV/html/Theiner_Analyzing_Results_of_Depth_Estimation_Models_With_Monocular_Criteria_CVPRW_2023_paper.html

2022

  1. [1]
    R. J. Sebastian, R. Ewerth, and A. Hoppe:
    Grade Level Filtering for Learning Object Search using Entity Linking
    In: International Workshop on Investigating Learning During Web Search co-located with the International ACM SIGIR Conference on Research and Development in Information Retrieval, IWILDS@SIGIR 2022, Madrid, Spain, July 15, 2022, 3411, pp. 69–83. CEUR-WS.org, 2022.
    https://ceur-ws.org/Vol-3411/IWILDS-paper3.pdf
  2. [2]
    G. S. Cheema, S. Hakimov, A. Sittar, E. Müller-Budack, C. Otto, and R. Ewerth:
    MM-Claims: A Dataset for Multimodal Claim Detection in Social Media
    In: Findings of the Association for Computational Linguistics: NAACL 2022, Seattle, WA, United States, July 10-15, 2022, pp. 962–979. Association for Computational Linguistics, 2022.
    https://doi.org/10.18653/v1/2022.findings-naacl.72
  3. [3]
    S. Hakimov, G. S. Cheema, and R. Ewerth:
    TIB-VA at SemEval-2022 Task 5: A Multimodal Architecture for the Detection and Classification of Misogynous Memes
    In: International Workshop on Semantic Evaluation co-loacated with Annual Conference of the North American Chapter of the Association for Computational Linguistics, SemEval@NAACL 2022, Seattle, Washington, United States, July 14-15, 2022, pp. 756–760. Association for Computational Linguistics, 2022.
    https://doi.org/10.18653/v1/2022.semeval-1.105
  4. [4]
    E. Entrup, A. Eppelin, R. Ewerth, J. Hartwig, M. Tullney, M. Wohlgemuth, and A. Hoppe:
    B!SON: A Tool for Open Access Journal Recommendation
    In: International Conference on Theory and Practice of Digital Libraries, TPDL 2022, Padua, Italy, September 20-23, 2022, pp. 357–364. Springer, 2022.
    https://doi.org/10.1007/978-3-031-16802-4_33
  5. [5]
    M. Merkt, A. Hoppe, G. Bruns, R. Ewerth, and M. Huff:
    Pushing the button: Why do learners pause online videos?
    Computers & Education, 176, pp. 104355, 2022.
    https://doi.org/10.1016/J.COMPEDU.2021.104355
  6. [6]
    A. Brack, A. Hoppe, M. Stocker, S. Auer, and R. Ewerth:
    Analysing the requirements for an Open Research Knowledge Graph: use cases, quality requirements, and construction strategies
    International Journal on Digital Libraries, 23(1), pp. 33–55, 2022.
    https://doi.org/10.1007/S00799-021-00306-X
  7. [7]
    C. Otto, M. Rokicki, G. Pardi, W. Gritz, D. Hienert, R. Yu, J. Hoyer, A. Hoppe, S. Dietze, P. Holtz, Y. Kammerer, and R. Ewerth:
    SaL-Lightning Dataset: Search and Eye Gaze Behavior, Resource Interactions and Knowledge Gain during Web Search
    In: ACM SIGIR Conference on Human Information Interaction and Retrieval, CHIIR 2022, Regensburg, Germany, March 14 - 18, 2022, pp. 347–352. ACM, 2022.
    https://doi.org/10.1145/3498366.3505835
  8. [8]
    A. Brack, A. Hoppe, P. Buschermöhle, and R. Ewerth:
    Cross-domain multi-task learning for sequential sentence classification in research papers
    In: ACM/IEEE Joint Conference on Digital Libraries, JCDL 2022, Cologne, Germany, June 20 - 24, 2022, pp. 34. ACM, 2022.
    Best Student Paper Award
    https://doi.org/10.1145/3529372.3530922
  9. [9]
    C. Otto, M. Stamatakis, A. Hoppe, and R. Ewerth:
    Predicting Knowledge Gain for MOOC Video Consumption
    In: International Conference on Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners’ and Doctoral Consortium, AIED 2022, Durham, UK, July 27-31, 2022, pp. 458–462. Springer, 2022.
    https://doi.org/10.1007/978-3-031-11647-6_92
  10. [10]
    J. Hoyer, A. Hoppe, Y. Kammerer, C. Otto, G. Pardi, M. Rokicki, R. Yu, S. Dietze, R. Ewerth, and P. Holtz:
    The Search as Learning Spaceship: Toward a Comprehensive Model of Psychological and Technological Facets of Search as Learning
    Frontiers in Psychology, 13. Frontiers Media SA, 2022.
    https://doi.org/10.3389/fpsyg.2022.827748
  11. [11]
    M. Mühling, N. Korfhage, K. Pustu-Iren, J. Bars, M. Knapp, H. Bellafkir, M. Vogelbacher, D. Schneider, A. Hörth, R. Ewerth, and B. Freisleben:
    VIVA: visual information retrieval in video archives
    International Journal on Digital Libraries, 23(4), pp. 319–333, 2022.
    https://doi.org/10.1007/S00799-022-00337-Y
  12. [12]
    M. Springstein, S. Schneider, C. Althaus, and R. Ewerth:
    Semi-supervised Human Pose Estimation in Art-historical Images
    In: ACM Conference on Multimedia, MM 2022, Lisboa, Portugal, October 10 - 14, 2022, pp. 1107–1116. ACM, 2022.
    https://doi.org/10.1145/3503161.3548371
  13. [13]
    S. Schneider, M. Springstein, J. Rahnama, H. Kohle, R. Ewerth, and E. Hüllermeier:
    iART - Eine Suchmaschine zur Unterstützung von bildorientierten Forschungsprozessen
    In: Tagung des Verbands Digital Humanities im deutschsprachigen Raum, DHd 2022, Potsdam, Germany, March 7 - 11, 2022, 2022.
    https://doi.org/10.5281/ZENODO.6310.528175
  14. [14]
    J. Theiner, W. Gritz, E. Müller-Budack, R. Rein, D. Memmert, and R. Ewerth:
    Extraction of Positional Player Data from Broadcast Soccer Videos
    In: IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022, Waikoloa, HI, USA, January 3-8, 2022, pp. 1463–1473. IEEE, 2022.
    https://doi.org/10.1109/WACV51458.2022.00153
  15. [15]
    J. Theiner, E. Müller-Budack, and R. Ewerth:
    Interpretable Semantic Photo Geolocation
    In: IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022, Waikoloa, HI, USA, January 3-8, 2022, pp. 1474–1484. IEEE, 2022.
    https://doi.org/10.1109/WACV51458.2022.00154
  16. [16]
    S. Giancola, A. Cioppa, A. Deliège, F. Magera, V. Somers, L. Kang, X. Zhou, O. Barnich, C. D. Vleeschouwer, A. Alahi, B. Ghanem, M. V. Droogenbroeck, A. Darwish, A. Maglo, A. Clapés, A. Luyts, A. Boiarov, A. Xarles, A. Orcesi, A. Shah, B. Fan, B. Comandur, C. Chen, C. Zhang, C. Zhao, C. Lin, C. Chan, C. C. Hui, D. Li, F. Yang, F. Liang, F. Da, F. Yan, F. Yu, G. Wang, H. A. Chan, H. Zhu, H. Kan, J. Chu, J. Hu, J. Gu, J. Chen, J. V. B. Soares, J. Theiner, J. D. Corte, J. H. Brito, J. Zhang, J. Li, J. Liang, L. Shen, L. Ma, L. Chen, M. S. Marques, M. Azatov, N. Kasatkin, N. Wang, Q. Jia, Q. Pham, R. Ewerth, R. Song, R. Li, R. Gade, R. Debien, R. Zhang, S. Lee, S. Escalera, S. Jiang, S. Odashima, S. Chen, S. Masui, S. Ding, S. Chan, S. Chen, T. E. Shabrawy, T. He, T. B. Moeslund, W. Siu, W. Zhang, W. Li, X. Wang, X. Tan, X. Li, X. Wei, X. Ye, X. Liu, X. Wang, Y. Guo, Y. Zhao, Y. Yu, Y. Li, Y. He, Y. Zhong, Z. Guo, and Z. Li:
    SoccerNet 2022 Challenges Results
    In: Workshop on Multimedia Content Analysis in Sports co-located with the ACM Multimedia Conference, MMSports@MM 2022, Lisboa, Portugal, October 14, pp. 75–86. ACM, 2022.
    https://doi.org/10.1145/3552437.3558545

2021

  1. [1]
    G. S. Cheema, S. Hakimov, E. Müller-Budack, and R. Ewerth:
    On the Role of Images for Analyzing Claims in Social Media
    In: International Workshop on Cross-lingual Event-centric Open Analytics co-located with the Web Conference, CLEOPATRA@WWW 2021, Virtual Event, April 12, 2021, pp. 32–46. CEUR-WS.org, 2021.
    http://ceur-ws.org/Vol-2829/paper3.pdf
  2. [2]
    G. S. Cheema, S. Hakimov, E. Müller-Budack, and R. Ewerth:
    A Fair and Comprehensive Comparison of Multimodal Tweet Sentiment Analysis Methods
    In: Workshop on Multi-Modal Pre-Training for Multimedia Understanding co-located with the International Conference on Multimedia Retrieval, MMPT@ICMR 2021, Virtual Event, August 21, 2021, pp. 37–45. ACM, 2021.
    https://doi.org/10.1145/3463945.3469058
  3. [3]
    R. Ewerth, C. Otto, and E. Müller-Budack:
    Computational Approaches for the Interpretation of Image-text Relations
    Empirical Multimodality Research: Methods, Evaluations, Implications, pp. 109–138. De Gruyter, 2021.
    https://doi.org/10.1515/9783110725001-005
  4. [4]
    J. A. Ghauri, S. Hakimov, and R. Ewerth:
    Supervised Video Summarization Via Multiple Feature Sets with Parallel Attention
    In: IEEE International Conference on Multimedia and Expo, ICME 2021, Shenzhen, China, July 5-9, 2021, pp. 1–6s. IEEE, 2021.
    https://doi.org/10.1109/ICME51207.2021.9428318
  5. [5]
    H. Kanafani, J. A. Ghauri, S. Hakimov, and R. Ewerth:
    Unsupervised Video Summarization via Multi-source Features
    In: International Conference on Multimedia Retrieval, ICMR 2021, Taipei, Taiwan, August 21-24, 2021, pp. 466–470. ACM, 2021.
    https://doi.org/10.1145/3460426.3463597
  6. [6]
    W. Gritz, A. Hoppe, and R. Ewerth:
    On the Impact of Features and Classifiers for Measuring Knowledge Gain during Web Search - A Case Study
    In: International Workshop on Investigating Learning During Web Search co-located with the International Conference on Information and Knowledge Management, IWILDS@CIKM 2021, Gold Coast, Queensland, Australia, November 1-5, 2021. CEUR-WS.org, 2021.
    https://ceur-ws.org/Vol-3052/paper6.pdf
  7. [7]
    E. Müller-Budack, J. Theiner, S. Diering, M. Idahl, S. Hakimov, and R. Ewerth:
    Multimodal news analytics using measures of cross-modal entity and context consistency
    International Journal of Multimedia Information Retrieval, 10(2), pp. 111–125, 2021.
    Invited Paper (Best Papers of ACM ICMR 2020)
    https://doi.org/10.1007/s13735-021-00207-4
  8. [8]
    E. Müller-Budack, K. Pustu-Iren, S. Diering, M. Springstein, and R. Ewerth:
    Image Analytics in Web Archives
    The Past Web: Exploring Web Archives, pp. 141–151. Springer International Publishing, 2021.
    https://doi.org/10.1007/978-3-030-63291-5_11
  9. [9]
    E. Müller-Budack, M. Springstein, S. Hakimov, K. Mrutzek, and R. Ewerth:
    Ontology-driven Event Type Classification in Images
    In: IEEE Winter Conference on Applications of Computer Vision, WACV 2021, Virtual Event, January 3-8, 2021, pp. 2927–2937. IEEE, 2021.
    https://doi.org/10.1109/WACV48630.2021.00297
  10. [10]
    A. Hoppe, D. Morris, and R. Ewerth:
    Evaluation of Automated Image Descriptions for Visually Impaired Students
    In: International Conference on Artificial Intelligence in Education, AIED, 2021, Utrecht, The Netherlands, June 14-18, 2021, pp. 196–201. Springer, 2021.
    https://doi.org/10.1007/978-3-030-78270-2_35
  11. [11]
    C. Otto, R. Yu, G. Pardi, J. Hoyer, M. Rokicki, A. Hoppe, P. Holtz, Y. Kammerer, S. Dietze, and R. Ewerth:
    Predicting Knowledge Gain During Web Search Based on Multimedia Resource Consumption
    In: International Conference on Artificial Intelligence in Education, AIED 2021, Utrecht, The Netherlands, June 14-18, 2021, pp. 318–330. Springer, 2021.
    https://doi.org/10.1007/978-3-030-78292-4_26
  12. [12]
    E. Navarrete, A. Hoppe, and R. Ewerth:
    A Review on Recent Advances in Video-based Learning Research: Video Features, Interaction, Tools, and Technologies
    In: International Workshop on Investigating Learning During Web Search co-located with the International Conference on Information and Knowledge Management, IWILDS@CIKM 2021, Gold Coast, Queensland, Australia, November 1-5, 2021, 3052. CEUR-WS.org, 2021.
    https://ceur-ws.org/Vol-3052/paper7.pdf
  13. [13]
    A. Brack, D. U. Müller, A. Hoppe, and R. Ewerth:
    Coreference Resolution in Research Papers from Multiple Domains
    In: European Conference on IR Research, ECIR 2021, Virtual Event, March 28 - April 1, 2021, pp. 79–97. Springer, 2021.
    https://doi.org/10.1007/978-3-030-72113-8_6
  14. [14]
    A. Brack, A. Hoppe, and R. Ewerth:
    Citation Recommendation for Research Papers via Knowledge Graphs
    In: International Conference on Theory and Practice of Digital Libraries, TPDL 2021, Virtual Event, September 13-17, 2021, pp. 165–174. Springer, 2021.
    https://doi.org/10.1007/978-3-030-86324-1_20
  15. [15]
    K. Pustu-Iren, E. Müller-Budack, S. Hakimov, and R. Ewerth:
    Visualizing Copyright-Protected Video Archive Content Through Similarity Search
    In: International Conference on Theory and Practice of Digital Libraries, TPDL 2021, Virtual Event, September 13-17, 2021, pp. 123–127. Springer, 2021.
    https://doi.org/10.1007/978-3-030-86324-1_15
  16. [16]
    K. Pustu-Iren, G. Bruns, and R. Ewerth:
    A Multimodal Approach for Semantic Patent Image Retrieval
    Patent Text Mining and Semantic Technologies, 2021.
  17. [17]
    M. Springstein, S. Schneider, J. Rahnama, E. Hüllermeier, H. Kohle, and R. Ewerth:
    iART: A Search Engine for Art-Historical Images to Support Research in the Humanities
    In: ACM Conference on Multimedia, MM 2021, Virtual Event, China, October 20 - 24, 2021, pp. 2801–2803. ACM, 2021.
    https://doi.org/10.1145/3474085.3478564
  18. [18]
    M. Springstein, E. Müller-Budack, and R. Ewerth:
    Unsupervised Training Data Generation of Handwritten Formulas using Generative Adversarial Networks with Self-Attention
    In: Workshop on Multi-Modal Pre-Training for Multimedia Understanding co-located with the International Conference on Multimedia Retrieval, MMPT@ICMR 2021, Virtual Event, August 21, 2021, pp. 46–54. ACM, 2021.
    https://doi.org/10.1145/3463945.3469059
  19. [19]
    M. Springstein, E. Müller-Budack, and R. Ewerth:
    QuTI! Quantifying Text-Image Consistency in Multimodal Documents
    In: ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2021, Virtual Event, July 11-15, 2021, pp. 2575–2579. ACM, 2021.
    https://doi.org/10.1145/3404835.3462796
  20. [20]
    G. Tahmasebzadeh, E. Kacupaj, E. Müller-Budack, S. Hakimov, J. Lehmann, and R. Ewerth:
    GeoWINE: Geolocation based Wiki, Image, News and Event Retrieval
    In: International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2021, Virtual Event, July 11-15, 2021, pp. 2565–2569. ACM, 2021.
    https://doi.org/10.1145/3404835.3462786
  21. [21]
    H. Biermann, J. Theiner, M. Bassek, D. Raabe, D. Memmert, and R. Ewerth:
    A Unified Taxonomy and Multimodal Dataset for Events in Invasion Games
    In: International Workshop on Multimedia Content Analysis in Sports co-located with the ACM Multimedia Conference, MMSports@MM 2021, Virtual Event, China, October 20, pp. 1–10. ACM, 2021.
    https://doi.org/10.1145/3475722.3482792
  22. [22]
    J. Lienen, E. Hüllermeier, R. Ewerth, and N. Nommensen:
    Monocular Depth Estimation via Listwise Ranking Using the Plackett-Luce Model
    In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, Virtual Event, June 19-25, 2021, pp. 14595–14604. Computer Vision Foundation / IEEE, 2021.
    https://doi.org/10.1109/CVPR46437.2021.01436
  23. [23]
    R. Tang, R. Yu, M. Rokicki, R. Ewerth, and S. Dietze:
    Domain-Specific Modeling of User Knowledge in Informational Search Sessions
    In: CIKM 2021 Workshops co-located with the ACM International Conference on Information and Knowledge Management, CIKM 2021, Gold Coast, Queensland, Australia, November 1-5, 2021. CEUR-WS.org, 2021.
    https://ceur-ws.org/Vol-3052/paper8.pdf
  24. [24]
    J. Lienen, N. Nommensen, R. Ewerth, and E. Hüllermeier:
    Robust Regression for Monocular Depth Estimation
    In: Asian Conference on Machine Learning, ACML 2021, 17-19 November 2021, Virtual Event, pp. 1001–1016. PMLR, 2021.
    https://proceedings.mlr.press/v157/lienen21a.html
  25. [25]
    S. Hakimov and R. Ewerth:
    Combining Textual Features for the Detection of Hateful and Offensive Language
    In: Working Notes of FIRE 2021 - Forum for Information Retrieval Evaluation, Gandhinagar, India, December 13-17, 2021, pp. 412–418. CEUR-WS.org, 2021.
    https://ceur-ws.org/Vol-3159/T1-40.pdf

2020

  1. [1]
    G. S. Cheema, S. Hakimov, and R. Ewerth:
    Check_square at CheckThat! 2020 Claim Detection in Social Media via Fusion of Transformer and Syntactic Features
    In: Working Notes of Conference and Labs of the Evaluation Forum, CLEF 2020, Virtual Event, September 22-25, 2020. CEUR-WS.org, 2020.
    https://ceur-ws.org/Vol-2696/paper_216.pdf
  2. [2]
    G. S. Cheema, S. Hakimov, and R. Ewerth:
    TIB’s Visual Analytics Group at MediaEval ’20: Detecting Fake News on Corona Virus and 5G Conspiracy
    In: Working Notes Proceedings of the MediaEval 2020 Workshop, Virtual Event, 14-15 December 2020. CEUR-WS.org, 2020.
    https://ceur-ws.org/Vol-2882/paper56.pdf
  3. [3]
    J. A. Ghauri, S. Hakimov, and R. Ewerth:
    Classification of Important Segments in Educational Videos using Multimodal Features
    In: CIKM 2020 Workshops co-located with the ACM International Conference on Information and Knowledge Management, CIKM 2020 Workshops, Galway, Ireland, October 19-23, 2020, 2699. CEUR-WS.org, 2020.
  4. [4]
    D. Morris, E. Müller-Budack, and R. Ewerth:
    SlideImages: A Dataset for Educational Image Classification
    In: European Conference on Information Retrieval, ECIR 2020, Lisbon, Portugal, April 14-17, 2020, pp. 289–296. Springer, 2020.
    https://doi.org/10.1007/978-3-030-45442-5_36
  5. [5]
    E. Müller-Budack, J. Theiner, S. Diering, M. Idahl, and R. Ewerth:
    Multimodal Analytics for Real-world News using Measures of Cross-modal Entity Consistency
    In: International Conference on Multimedia Retrieval, ICMR 2020, Virtual Event, June 8-11, 2020, pp. 16–25. ACM, 2020.
    Best Paper Award
    https://doi.org/10.1145/3372278.3390670
  6. [6]
    A. Brack, J. D’Souza, A. Hoppe, S. Auer, and R. Ewerth:
    Domain-Independent Extraction of Scientific Concepts from Research Articles
    In: European Conference on Information Retrieval, ECIR 2020, Lisbon, Portugal, April 14-17, 2020, pp. 251–266. Springer, 2020.
    https://doi.org/10.1007/978-3-030-45439-5_17
  7. [7]
    A. Brack, A. Hoppe, M. Stocker, S. Auer, and R. Ewerth:
    Requirements Analysis for an Open Research Knowledge Graph
    In: International Conference on Theory and Practice of Digital Libraries, TPDL 2020, Lyon, France, August 25-27, 2020, pp. 3–18. Springer, 2020.
    https://doi.org/10.1007/978-3-030-54956-5_1
  8. [8]
    J. D’Souza, A. Hoppe, A. Brack, M. Y. Jaradeh, S. Auer, and R. Ewerth:
    The STEM-ECR Dataset: Grounding Scientific Entity References in STEM Scholarly Content to Authoritative Encyclopedic and Lexicographic Sources
    In: Language Resources and Evaluation Conference, LREC 2020, Marseille, France, May 11-16, 2020, pp. 2192–2203. European Language Resources Association, 2020.
    https://aclanthology.org/2020.lrec-1.268/
  9. [9]
    C. Otto, M. Springstein, A. Anand, and R. Ewerth:
    Characterization and Classification of Semantic Image-Text Relations
    International Journal of Multimedia Information Retrieval, 9(1), pp. 31–45, 2020.
    Invited Paper (Best Papers of ACM ICMR 2019)
    https://doi.org/10.1007/s13735-019-00187-6
  10. [10]
    K. Pustu-Iren, J. Sittel, R. Mauer, O. Bulgakowa, and R. Ewerth:
    Automated Visual Content Analysis for Film Studies: Current Status and Challenges
    Digital Humanities Quarterly, 14(4), 2020.
    http://www.digitalhumanities.org/dhq/vol/14/4/000518/000518.html
  11. [11]
    K. Pustu-Iren, J. Bars, M. Mühling, N. Korfhage, A. Hörth, B. Freisleben, and R. Ewerth:
    Videomining in historischem Material–ein Praxisbericht: Projekt „Visuelle Informationssuche in Video-Archiven “(VIVA)
    Bibliothek Forschung und Praxis, 44(3), pp. 436–444. De Gruyter, 2020.
  12. [12]
    S. Schneider, M. Springstein, J. Rahnama, E. Hüllermeier, R. Ewerth, and H. Kohle:
    The Dissimilar in the Similar. An Attribute-guided Approach to the Subject-specific Classification of Art-historical Objects
    In: Jahrestagung der Gesellschaft für Informatik, INFORMATIK 2020, Karlsruhe, Germany, September 28 - October 2, 2020, P-307, pp. 1355–1364. GI, 2020.
    https://doi.org/10.18420/INF2020_127
  13. [13]
    J. Armitage, E. Kacupaj, G. Tahmasebzadeh, Swati, M. Maleshkova, R. Ewerth, and J. Lehmann:
    MLM: A Benchmark Dataset for Multitask Learning with Multiple Languages and Modalities
    In: ACM International Conference on Information and Knowledge Management, CIKM 2020, Virtual Event, Ireland, October 19-23, 2020, pp. 2967–2974. ACM, 2020.
    https://doi.org/10.1145/3340531.3412783
  14. [14]
    G. Tahmasebzadeh, S. Hakimov, E. Müller-Budack, and R. Ewerth:
    A Feature Analysis for Multimodal News Retrieval
    In: International Workshop on Cross-lingual Event-centric Open Analytics co-located with the Extended Semantic Web Conference, CLEOPATRA@ESWC 2020), Virtual Event, June 3, 2020, pp. 43–56. CEUR-WS.org, 2020.
    Best Paper Award
    http://ceur-ws.org/Vol-2611/paper4.pdf
  15. [15]
    M. Tavakoli, S. Hakimov, R. Ewerth, and G. Kismihók:
    A Recommender System For Open Educational Videos Based On Skill Requirements
    In: IEEE International Conference on Advanced Learning Technologies, ICALT 2020, Tartu, Estonia, July 6-9, 2020, pp. 1–5. IEEE, 2020.
    https://doi.org/10.1109/ICALT49669.2020.00008

2019

  1. [1]
    E. Müller-Budack, J. Theiner, R. Rein, and R. Ewerth:
    "Does 4-4-2 exist?" - An Analytics Approach to Understand and Classify Football Team Formations in Single Match Situations
    In: International Workshop on Multimedia Content Analysis in Sports co-located with the ACM Multimedia Conference, MMSports@MM 2019, Nice, France, October 25, 2019, pp. 25–33. ACM, 2019.
    https://doi.org/10.1145/3347318.3355527
  2. [2]
    R. Ewerth, S. Dietze, A. Hoppe, and R. Yu:
    SALMM’19: First International Workshop on Search as Learning with Multimedia Information
    In: ACM International Conference on Multimedia, MM 2019, Nice, France, October 21-25, 2019, pp. 2724–2725. ACM, 2019.
    https://doi.org/10.1145/3343031.3350553
  3. [3]
    C. Otto, M. Springstein, A. Anand, and R. Ewerth:
    Understanding, Categorizing and Predicting Semantic Image-Text Relations
    In: International Conference on Multimedia Retrieval, ICMR 2019, Ottawa, ON, Canada, June 10-13, 2019, pp. 168–176. ACM, 2019.
    Best Paper Award
    https://doi.org/10.1145/3323873.3325049
  4. [4]
    J. Shi, C. Otto, A. Hoppe, P. Holtz, and R. Ewerth:
    Investigating Correlations of Automatically Extracted Multimodal Features and Lecture Video Quality
    In: International Workshop on Search as Learning with Multimedia Information, SALMM 2019, pp. 11–19. ACM, 2019.
    https://doi.org/10.1145/3347451.3356731
  5. [5]
    H. Zhou, C. Otto, and R. Ewerth:
    Visual Summarization of Scholarly Videos Using Word Embeddings and Keyphrase Extraction
    In: International Conference on Theory and Practice of Digital Libraries, TPDL 2019, Oslo, Norway, September 9-12, 2019, pp. 327–335. Springer, 2019.
    https://doi.org/10.1007/978-3-030-30760-8__28
  6. [6]
    C. Otto, S. Holzki, and R. Ewerth:
    Is This an Example Image? - Predicting the Relative Abstractness Level of Image and Text
    In: European Conference on Information Retrieval, ECIR 2019, Cologne, Germany, April 14-18, 2019, pp. 711–725. Springer, 2019.
    https://doi.org/10.1007/978-3-030-15712-8_46
  7. [7]
    K. Pustu-Iren, M. Mühling, N. Korfhage, J. Bars, S. Bernhöft, A. Hörth, B. Freisleben, and R. Ewerth:
    Investigating Correlations of Inter-coder Agreement and Machine Annotation Performance for Historical Video Data
    In: International Conference on Theory and Practice of Digital Libraries, TPDL 2019, Oslo, Norway, September 9-12, 2019, pp. 107–114. Springer, 2019.
    https://doi.org/10.1007/978-3-030-30760-8_9
  8. [8]
    A. Ceroni, C. Ma, and R. Ewerth:
    Mining exoticism from visual content with fusion-based deep neural networks
    International Journal of Multimedia Information Retrieval, 8(1), pp. 19–33, 2019.
    Invited Paper (Best Papers of ACM ICMR 2018)
    https://doi.org/10.1007/s13735-018-00165-4
  9. [9]
    M. Mühling, M. Meister, N. Korfhage, J. Wehling, A. Hörth, R. Ewerth, and B. Freisleben:
    Content-based video retrieval in historical collections of the German Broadcasting Archive
    International Journal on Digital Libraries, 20(2), pp. 167–183, 2019.
    https://doi.org/10.1007/S00799-018-0236-Z
  10. [10]
    R. Yu, M. d’Aquin, D. Gasevic, J. Kimmerle, E. Herder, and R. Ewerth:
    LILE2019: 8th International Workshop on Learning and Education with Web Data
    In: Companion Publication of the ACM Conference on Web Science, WebSci 2019, Boston, MA, USA, June 30 - July 03, 2019., pp. 15–16. ACM, 2019.
    https://doi.org/10.1145/3328413.3329404
  11. [11]
    D. Morris, P. Tang, and R. Ewerth:
    A Neural Approach for Text Extraction from Scholarly Figures
    In: International Conference on Document Analysis and Recognition, ICDAR 2019, Sydney, Australia, September 20-25, 2019, pp. 1438–1443. IEEE, 2019.
    https://doi.org/10.1109/ICDAR.2019.00231

2018

  1. [1]
    E. Müller-Budack, K. Pustu-Iren, S. Diering, and R. Ewerth:
    Finding Person Relations in Image Data of News Collections in the Internet Archive
    In: International Conference on Theory and Practice of Digital Libraries, TPDL 2018, Porto, Portugal, September 10-13, 2018, pp. 229–240. Springer, 2018.
    Honorable Mention Award
    https://doi.org/10.1007/978-3-030-00066-0_20
  2. [2]
    E. Müller-Budack, K. Pustu-Iren, and R. Ewerth:
    Geolocation Estimation of Photos Using a Hierarchical Model and Scene Classification
    In: European Conference on Computer Vision, ECCV 2018, Munich, Germany, September 8-14, 2018, pp. 575–592. Springer, 2018.
    https://doi.org/10.1007/978-3-030-01258-8_35
  3. [3]
    M. Springstein, H. H. Nguyen, A. Hoppe, and R. Ewerth:
    TIB-arXiv: An Alternative Search Portal for the arXiv Pre-print Server
    In: International Conference on Theory and Practice of Digital Libraries, TPDL 2018, Porto, Portugal, September 10-13, 2018, pp. 295–298. Springer, 2018.
    https://doi.org/10.1007/978-3-030-00066-0_26
  4. [4]
    A. Hoppe, J. Hagen, H. Holzmann, G. Kniesel, and R. Ewerth:
    An Analytics Tool for Exploring Scientific Software and Related Publications
    In: International Conference on Theory and Practice of Digital Libraries, TPDL 2018, Porto, Portugal, September 10-13, 2018, pp. 299–303. Springer, 2018.
    https://doi.org/10.1007/978-3-030-00066-0_27
  5. [5]
    A. Hoppe, P. Holtz, Y. Kammerer, R. Yu, S. Dietze, and R. Ewerth:
    Current challenges for studying search as learning processes
    In: Workshop on Learning & Education with Web Data co-located with ACM Web Science, LILE@Web Science 2018, May 27, 2018, 2018.
  6. [6]
    J. Medrek, C. Otto, and R. Ewerth:
    Recommending Scientific Videos Based on Metadata Enrichment Using Linked Open Data
    In: International Conference on Theory and Practice of Digital Libraries, TPDL 2018, Porto, Portugal, September 10-13, 2018, pp. 286–292. Springer, 2018.
    https://doi.org/10.1007/978-3-030-00066-0_25
  7. [7]
    M. Springstein, H. H. Nguyen, A. Hoppe, and R. Ewerth:
    TIB-arXiv: An Alternative Search Portal for the arXiv Pre-print Server
    In: International Conference on Theory and Practice of Digital Libraries, TPDL 2018, Porto, Portugal, September 10-13, 2018, 11057, pp. 295–298. Springer, 2018.
    https://doi.org/10.1007/978-3-030-00066-0_26
  8. [8]
    C. A. Henning and R. Ewerth:
    Estimating the information gap between textual and visual representations
    International Journal of Multimedia Information Retrieval, 7(1), pp. 43–56, 2018.
    Invited Paper (Best Papers of ACM ICMR 2017)
    https://doi.org/10.1007/s13735-017-0142-y
  9. [9]
    A. Ceroni, C. Ma, and R. Ewerth:
    Mining Exoticism from Visual Content with Fusion-based Deep Neural Networks
    In: Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval, ICMR 2018, Yokohama, Japan, June 11-14, 2018, pp. 37–45. ACM, 2018.
    Honorable Mention Award
    https://doi.org/10.1145/3206025.3206044https://doi.org/10.1145/3206025.3206044

2017

  1. [1]
    R. Ewerth, M. Springstein, E. Müller, A. Balz, J. Gehlhaar, T. Naziyok, K. Dembczynski, and E. Hüllermeier:
    Estimating relative depth in single images via rankboost
    In: IEEE International Conference on Multimedia and Expo, ICME 2017, Hong Kong, China, July 10-14, 2017, pp. 919–924. IEEE Computer Society, 2017.
    https://doi.org/10.1109/ICME.2017.8019434
  2. [2]
    M. Mühling, N. Korfhage, E. Müller, C. Otto, M. Springstein, T. Langelage, U. Veith, R. Ewerth, and B. Freisleben:
    Deep learning for content-based video retrieval in film and television production
    Multimedia Tools and Applications, 76(21), pp. 22169–22194, 2017.
    https://doi.org/10.1007/s11042-017-4962-9
  3. [3]
    R. Ewerth, M. Springstein, L. A. Phan-Vogtmann, and J. Schütze:
    "Are Machines Better Than Humans in Image Tagging?" - A User Study Adds to the Puzzle
    In: European Conference on Information Retrieval, ECIR 2017, Aberdeen, UK, April 8-13, 2017, 10193, pp. 186–198, 2017.
    https://doi.org/10.1007/978-3-319-56608-5_15
  4. [4]
    E. Müller, M. Springstein, and R. Ewerth:
    "When Was This Picture Taken?" - Image Date Estimation in the Wild
    In: European Conference on Information Retrieval, ECIR 2017, Aberdeen, UK, April 8-13, 2017, pp. 619–625, 2017.
    https://doi.org/10.1007/978-3-319-56608-5_57
  5. [5]
    C. A. Henning and R. Ewerth:
    Estimating the Information Gap between Textual and Visual Representations
    In: ACM on International Conference on Multimedia Retrieval, ICMR 2017, Bucharest, Romania, June 6-9, 2017, pp. 14–22. ACM, 2017.
    Best Multimodal Paper Award
    https://doi.org/10.1145/3078971.3078991

2016

  1. [1]
    E. Müller, C. Otto, and R. Ewerth:
    Semi-supervised Identification of Rarely Appearing Persons in Video by Correcting Weak Labels
    In: International Conference on Multimedia Retrieval, ICMR 2016, New York, New York, USA, June 6-9, 2016, pp. 381–384. ACM, 2016.
    https://doi.org/10.1145/2911996.2912073
  2. [2]
    M. Springstein and R. Ewerth:
    On the Effects of Spam Filtering and Incremental Learning for Web-Supervised Visual Concept Classification
    In: ACM International Conference on Multimedia Retrieval, ICMR 2016, New York, New York, USA, June 6-9, 2016, pp. 377–380. ACM, 2016.
    https://doi.org/10.1145/2911996.2912072
  3. [3]
    M. Mühling, M. Meister, N. Korfhage, J. Wehling, A. Hörth, R. Ewerth, and B. Freisleben:
    Content-Based Video Retrieval in Historical Collections of the German Broadcasting Archive
    In: International Conference on Theory and Practice of Digital Libraries, TPDL 2016, Hannover, Germany, September 5-9, 2016, pp. 67–78. Springer, 2016.
    https://doi.org/10.1007/978-3-319-43997-6_6