
OER GitHub Tutorial - Template

Sophie Matter

Create and publish OER with GitHub
We believe that open educational resources can be created using tools the open
source community has been successfully using for many years now. This tutorial
guides you through the creation of open educational resources (OER) with
GitHub. Using our GitHub template, you can easily create and publish your
own OER in just a few minutes.

What’s in this tutorial:

• Quick Start (< 5 minutes)

• Step-by-step (< 10 minutes)

– Requirements

– Create a project

– Generate output

– Fill with your own content

– Add your metadata

– Insert into OERSI

• Reference

– Configuration options
– Markdown
– Git
– Working offline
– Immediate update in OERSI
– Different formats

• Troubleshooting

• FAQ

After completing this tutorial, you will have an automatically gen-
erated OER with your own content and metadata, published on

1

GitHub for free and ready to be put into our OER search index
OERSI.

Quick Start
If you want to get started really quickly, you can follow this quick
start tutorial and create a simple OER within just a few minutes.

1. Create a GitHub account, if you don’t have one yet

As we will host our OER on GitHub, a free GitHub account is
required.

If you do not have an account yet, go to GitHub’s sign up page and create a free
account: https://github.com/signup.

Afterwards, log into your account.

2. Create your project

Create the place where your OER lies.

Go to the Markdown Documents Template and click on the green Use this
template button, then on Create a new repository. This generated your
own project (called repository). Assign the repository’s owner to yourself (or
to a group of your choice, if you are a member of one) and give it a short, but
meaningful name that describes your OER. This name will also be the used
for the URL to your OER. Optionally add a description. Make sure that the
repository is set to public. Lastly, confirm by clicking on Create repository
from template.

3. Fill the project with your content

Now that you have your own project/repository, you can fill it with
your own content.

Currently, you have the template’s dummy data in your repository. You can edit
a file by clicking on the file and then on the edit button. The files you should
edit are:

• chapter01.md
• chapter02.md
• chapter03.md
• chapter04.md

You can start by edititing chapter01.md. Click on the file, the in the top right
corner, click on the pen symbol (“Edit this file”). You can delete the file’s content
and start writing something of your own.

2

https://oersi.org
https://github.com/
https://github.com/signup
https://github.com/TIBHannover/markdown-documents-template

Figure 1: Video preview: “Create repository from template (videos/create-from-
template.mp4)” (not available in PDF version). Click to view the video online.

Now, in the top right corner, click on the green “Commit changes. . . ” button.
Write a short message on what you have changed (“Commit message”), if you
want a longer description, and now click on the green “Commit changes” button.

You can also choose to create or delete files. If you do not want the four chapter
files that were created by the template, you can click on the file, click on the
three dots on the top right of the file, and then on “Delete file”. To upload files,
you can click on the “Add file” button in your repository.

4. Generate the OER

The automatic generation will take your content and generate different
output formats.

Lastly, enable the automatic generation of your OER. To do this, go to the
project’s Settings -> Pages and in Build and Development set the source to
GitHub Actions. After this, you can head to the Actions tab and click on the
newest workflow run. If the worklow already ran, you will find that it failed. This
happened because the Pages were not enabled yet. In this case, click on re-run
jobs. Otherwise, wait until the jobs have finished. The generated documents are
now created.

3

https://tibhannover.github.io/oer-github-tutorial-template/videos/create-from-template.mp4

Figure 2: Video preview: “Pages (videos/pages.mp4)” (not available in PDF
version). Click to view the video online.

5. Add your metadata

Go to our Metadata Generator and insert the metadata that describes your OER.
In the top right corner, you have the option to switch the language between
German (“DE”) and English (“EN”).

Once you are done, click on the “Generate” button in the bottom of the page.
The metadata is now generated in a format our template understands. Now
copy everything to your clipboard. For this, you can click on “Copy”.

In your repository, click on the metadata.yml file and then on the pen symbol
(“Edit this file”) to edit the file. Delete the file’s contents and paste the metadata
from your clipboard. Now click on the green “Commit changes. . . ” button and
confirm with “Commit changes”.

Now at the bottom of the page, you can click on Generate. This generates the
metadata in the correct format. You can then copy the output to your clipboard
either by using the Copy button, or by selecting the whole text (Ctrl + A) and
copying it (Ctrl + C).

Done!

At the front page of your repository, inside the README.md content, there are
several links you can use to view your generated documents. Click on the
landing page link to view a page that lists metadata about your OER and

4

https://tibhannover.github.io/oer-github-tutorial-template/videos/pages.mp4
https://oersi.gitlab.io/metadata-form/metadata-generator.html

Figure 3: Video preview: “Add metadata (videos/metadata-placeholder.mp4)”
(not available in PDF version). Click to view the video online.

supplies several links to different output formats (like a web version, a pdf
version, . . .).

To insert your OER into the OER search index oersi.org, head to the
About section in the index of your repository, click on the settings
symbol and add open-educational-resources to Topics. Your
course will be indexed at night and appear on the next day.

Step by step tutorial
The step by step tutorial consists of the following steps, which you can click
through either on the sidebar, using the arrows on the bottom or simply using
the arrow keys on your keyboard.

• Requirements
• Create a project
• Generate Output
• Fill with your own content
• Add your metadata
• Configuration options
• Insert into OERSI

Requirements

For this tutorial, you will need a GitHub account. It is also rec-
ommended to get to know Markdown, a markup language which

5

https://tibhannover.github.io/oer-github-tutorial-template/videos/metadata-placeholder.mp4
https://oersi.org

can create formatted text using only plain-text, since Markdown is
used to write and format your content.

If you already have a GitHub account and know basic markdown
syntax, you can skip this part and directly go do Create a project.

Create a GitHub account

If you don’t have an account yet, go to GitHub and sign up. Confirm your e-mail
address and log in.

Markdown

From Matt Cone’s Markdown guide:

Markdown is a lightweight markup language that you can use to add
formatting elements to plaintext text documents. Created by John
Gruber in 2004, Markdown is now one of the world’s most popular
markup languages.

Using Markdown is different than using a WYSIWYG editor. In an
application like Microsoft Word, you click buttons to format words
and phrases, and the changes are visible immediately. Markdown
isn’t like that. When you create a Markdown-formatted file, you add
Markdown syntax to the text to indicate which words and phrases
should look different.

For example, to denote a heading, you add a number sign before
it (e.g., # Heading One). Or to make a phrase bold, you add two
asterisks before and after it (e.g., this text is bold). It may take a
while to get used to seeing Markdown syntax in your text, especially
if you’re accustomed to WYSIWYG applications.

If you want to learn about Markdown, what it is and what you can do with it,
you can read this guide: Get Started.

To see basic formatting options, check out the Cheat Sheet. More basic syntax
can be found in the Basic Syntax guide.

Some of the basic Markdown syntax is shown in the reference part of this tutorial:
Reference: Markdown.

Create a project

The place where you will put your OER is called a repository. You
can think of it as a project where all your files are located.

Once you are logged into GitHub, go to the TIB Hannover markdown docu-
ments template repository and click on “Use this template” -> “Create a new
repository”.

6

https://github.com/
https://www.markdownguide.org/getting-started/
https://www.markdownguide.org/getting-started/
https://www.markdownguide.org/cheat-sheet/
https://www.markdownguide.org/basic-syntax/
https://github.com/TIBHannover/markdown-documents-template
https://github.com/TIBHannover/markdown-documents-template

Figure 4: Create repository

Assign the repository to the correct owner and give it a short but meaningful
name. The name will be the URL of the repository as well. You can add a
description if you want. Now make sure that the visibility of the repository is
set to public. This has two main reasons: firstly, so people can see your OER,
and secondly to use the GitHub pages functionality which we will get to later.
Lastly, confim by clicking on “Create repository from template”.

Now, a new repository is initialized for you containing the contents from the
template.

Video tutorial

Generate output

The automatic generation will take your content (everything inside
the Markdown files, so those ending with .md) and generate different
output formats. For example, these include a web page and a pdf
version of your OER and are publicly accessible. This generation
is done each time you change something in your repository, so your
content will always be up to date.

In order to generate the different output formats for your OER, go to the project’s
Settings -> Pages and in Build and Development set the source to GitHub
Actions. After this, you can head to the Actions tab and click on the newest
workflow run. If the worklow already ran, you will find that it failed. This
happened because the Pages were not enabled yet. In this case, click on re-run
jobs. Otherwise, wait until the jobs have finished. The pages and documents are

7

Figure 5: Video preview: “Tutorial as video (videos/create-from-template.mp4)”
(not available in PDF version). Click to view the video online.

now created. They can be accessed by the link that appeared under the deploy
step.

Congratulations, you now have a complete course/document that you can make
your own!

What are Actions?

An Action is something that GitHub can execute with every commit
(save) you make to the repository. This includes the generation of
documents or pages, which we are using in this tutorial.

A more detailed explanation of GitHub Actions can be found here:
Understanding GitHub Actions.

What are Pages?

A Page is a public website hosted by GitHub. We can use GitHub
Actions to automatically generate our website and then host it on
GitHub Pages for everyone to see. You can either host your site for
free on your-username.github.io or use your own costum domain.

More information on GitHub Pages can be found here: About GitHub
Pages.

8

https://tibhannover.github.io/oer-github-tutorial-template/videos/create-from-template.mp4
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/pages/getting-started-with-github-pages/about-github-pages
https://docs.github.com/en/pages/getting-started-with-github-pages/about-github-pages

Video tutorial

Figure 6: Video preview: “Actions and Pages (videos/pages.mp4)” (not available
in PDF version). Click to view the video online.

Fill with content

Currently, there is still dummy data inside your repository. The next
step is to replace this dummy data with your actual OER.

How and where to upload your own content

In the repository, you can find four chapterXX.md files. These are our dummy
content files. You can either edit or delete them. You can of course create new
files, too. If you create new files, make sure that they end with the correct file
format ending .md, so filename.md.

To edit a file, click on the file name in the index of your repository.

Then, in the top right corner of the file, click on the pen button to edit the file.

Now, you can replace the content with your own. Add as much as you like.
The file is a Markdown file, so you should write your content using this markup
language. You can find more about Markdown in the Markdown section in the
reference part of this tutorial.

Once you are done, you can save your changes by clicking on the green Commit
changes... button in the top right corner.

9

https://tibhannover.github.io/oer-github-tutorial-template/videos/pages.mp4

Figure 7: Change content

Figure 8: Change content

Figure 9: Change content

10

Add a meaningful but short commit message, which is a message describing the
changes you have made, and optionally a longer description. Then confirm by
clicking the green Commit changes button.

Figure 10: Change content

Ensuring the correct order

By default, the automatic generator will look for all Markdown files (so those
ending with .md) in the top-level of the repository except for the README.md file,
order them alphabetically and create the different output formats by appending
them in this order. If you want to upload multiple content files, you will either
have to:

• adapt the names of the files so that they will be ordered correctly alpha-

11

betically, for example:

– 01_Introduction.md
– 02_Some-Chapter.md
– . . .

• or you will have to list every file in the correct order in config.yml.

You can learn more about that in the Configuration options section in the
reference part of this tutorial.

Add your metadata

Metadata is the data describing your OER. This includes information
like the title, author, license and much more. If you don’t supply
metadata with your repository, it is unclear what your OER is about,
who it is from, if and how your OER can be used and so on. This
is why we have a metadata.yml file in our repository. This file lets
us include the information about the OER directly in the repository.
This is also necessary for inserting your OER into a search index like
OERSI. This section shows how to replace the dummy metadata in
the repository with the correct metadata describing your OER.

Perhaps the easiest way to generate your own metadata for your repository in
the correct format is to use the OERSI metadata generator and fill out at least
all required fields, but try to fill out as much as you can.

Figure 11: Metadata generator

12

https://oersi.org
https://oersi.gitlab.io/metadata-form/metadata-generator.html

Now at the bottom of the page, you can click on Generate. This generates the
metadata in the correct format. You can then copy the output to your clipboard
either by using the Copy button, or by selecting the whole text (Ctrl + A) and
copying it (Ctrl + C).

Figure 12: Copy output to clipboard

In your GitHub repository, edit the metadata.yml file. Now delete the whole
file content and paste the output of the generator. To save, click on Commit
changes... in the top right corner. Confirm by clicking on Commit changes.

Video: Update the metadata

Insert your OER in OERSI

Let’s assume that. . .

• you have put your whole completed course or document content
into the repository, and it’s either ordered alphabetically or you
have defined the correct order in the config.yml file,

• you have enabled the Pages for GitHub Actions and there are
no errors during Action execution, thus you have a published
Page that represents the current version of your repository,

• you have entered full and correct metadata, ensuring the license
is correct and you are not violating another work’s license with
this license,

• inside your metadata.yml file, you have set your creative work
status to Published and the educational level to University,

then you are ready to put your OER into OERSI!

To put your course into the Open Ecucational Resources Search Index (OERSI),
head to the About settings in the index of your repository. Then in Topics, add

13

Figure 13: Video preview: “Update the metadata (videos/metadata-
placeholder.mp4)” (not available in PDF version). Click to view the video
online.

open-educational-resources.

The OERSI updates its index every night. So you will be able to find your OER
the next day either through the search bar or by filtering using the filters on the
left (e.g. search for your name in Author or setting the Provider to GitHub to
only show OER from GitHub).

If you want to immediately see your changes in the OERSI, you can use the
record updater.

To take the OER out of OERSI, simply set the status (creativeWorkStatus) in
the metadata.yml to Draft or Incomplete (or alternatively, you could remove
the topic open-educational-resources).

Done!

Congratulations, you did it!

If you want to learn more about what you can do with this template, you can
continue with the reference part.

Reference
You have your OER in different output formats, complete with your
own content and metadata and it is even already indexed in oersi, but
you want to learn more about what you can do with this template?

14

https://tibhannover.github.io/oer-github-tutorial-template/videos/metadata-placeholder.mp4
https://tibhannover.github.io/oer-github-tutorial-template/videos/metadata-placeholder.mp4
https://oersi.org
https://oersi.org/resources/pages/de/record_update/
https://oersi.org

Figure 14: About settings

Figure 15: Set the topic

15

In this part of the tutorial, we highlight further configuration options, Markdown
basics, workflows in GitHub and much more.

• Configuration options
• Markdown
• Git
• Working offline
• Immediate update in OERSI
• Different formats

Configuration options

In the repository, there is a file called config.yml. This gives you
some configuration options concerning the automatic generation of
your OER, like the order of your content.

In the top level of the repository, there is a file named config.yml. It includes
configuration for these four things:

• output: state the output formats that you want to be automatically
generated

• generate_landingpage: decide whether or not to create a landing page
• content_files: define the order of your content files
• generate_reuse_note: decide whether or not to generate a reuse note on

the generated documents

Editing this file As you are editing this file, you have to consider the format
of this file. This file is a yaml file. This file has a specific structure you have to
follow, or else the automatic generator will not work.

As you can see when opening the file, the structure looks like this:

output:
- format: asciidoc
- format: epub
- format: html
- format: pdf

generate_landingpage: true
content_files: # uncomment this to set the order of the documents (default alphabetical)
- chapter01.md
- chapter02.md
- chapter03.md
- chapter04.md
generate_reuse_note: true

So we have to consider the identation and the correct symbols to use. If we want
to use the content_files option, we uncomment this by deleting the # before
each line and removing the residual spaces:

16

output:
- format: asciidoc
- format: epub
- format: html
- format: pdf

generate_landingpage: true
content_files: # uncomment this to set the order of the documents (default alphabetical)

- chapter01.md
- chapter02.md
- chapter03.md
- chapter04.md

generate_reuse_note: true

The dashes (-) have to start with two spaces before the dash and then one space
after the dash. Basically, just make sure the number of spaces is consistent
throughout the whole file.

Figure 16: Video preview: “Config file explained (videos/config.mp4)” (not
available in PDF version). Click to view the video online.

Video tutorial

Markdown

For a good overview on what Markdown is and what you can do with
it, you can check out the Markdown guide from Matt Cone:

• What is Markdown and why should I use it?

• Basic Syntax

17

https://tibhannover.github.io/oer-github-tutorial-template/videos/config.mp4
https://www.markdownguide.org/getting-started/
https://www.markdownguide.org/basic-syntax/

Headings

To create a heading, add number signs (#) in front of a word or phrase. The
number of number signs you use should correspond to the heading level. For
example, to create a heading level three (<h3>), use three number signs (e.g.,
My Header) [1].

Heading level How to write it How it looks
Heading level 1 # Heading level 1
Heading level 2 ## Heading level 2
Heading level 3 ### Heading level 3
Heading level 4 #### Heading level 4
Heading level 5 ##### Heading level 5
Heading level 6 ###### Heading level 6

Markdown elements

Element How to write it How it looks
Bold **Bold text** Bold text
Italic *Italicized text* Italic text
Blockquote > blockquote To be seen at the top of this section
Ordered list 1. First item 2.

Second item
1. First item 2. Second item

Unordered list - First item -
Second item

- First item - Second item

Code ‘code‘ code
Horizontal rule --- —
Link Link text Markdown Guide

Image Alt text

[1] Matt Cone, markdownguide.org, Basic Syntax

Links to other sections

You can link to sections within your document using the link syntax shown in
the table above. The links are generated from the heading:

• # Heading -> #heading (You can reference it like this: [Heading](#heading))
• # Heading 1 -> #heading-1
• ### Lower heading level! -> #lower-heading-level

18

https://www.markdownguide.org/basic-syntax/
https://www.markdownguide.org
https://www.markdownguide.org
https://www.markdownguide.org/basic-syntax/

You can also set custom links like this:

My heading {#custom-id}

Now the link to this section is #custom-id.

Git

Here, you will only find a very brief overview of Git. If you want to
learn more about Git, You can find an abundance of free tutorials,
books and videos about Git, how it works and how to use it online.
We highly recommend to check out the free online open textbook
Pro Git.

What is Git and why should you use it?

Have you ever worked on different versions of a document, or even with different
people? Then you likely know how hard it is to keep track of changes, and how
easy to accidentally overwrite them. Git is a tool that helps with that. It is a
so-called version control system. To learn more about version control, you
can check out the Version Control section of the Pro Git book.

By playing the video you agree to YouTube retrieving and storing
information about you in the form of cookies.

How Git works

Git is used to keep track of changes of the files inside your repository. Once you
add a file to git, it is tracked. Git now automatically detects whether the file
was modified or not. You can then stage files and add them to a commit. All
these commits form your history, you can see which changes were made when by
whom and you can even revert files back to specific commits.

It is also possible to have multiple branches. You start out with one branch,
usually called the main or master branch. However, at any given time from
any branch, you can create a new branch. There, you can change files without
anything on the main branch being affected by it - you are basically working in
parallel, as if you copied your entire repository some other place, but much more
efficient. Plus you can easily switch between branches and merge changes of one
branch into another. This makes it easy to not only have one stable version on
the main branch while changing things on other branches, but also to collaborate
with others and not have each other’s changes overwrite anything.

Working on different branches and eventually merging them can lead to merge
conflicts. Merge conflicts arise when there are two changes to the same lines of a
file. They are resolved by choosing which changes to keep or by bringing them
together manually.

By playing the video you agree to YouTube retrieving and storing
information about you in the form of cookies.

19

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

Working offline

In this tutorial, we work online the entire time. We create all files
directly on GitHub. Another way of working is to work offline in a
local folder on your computer and then uploading your files to a git
repository. This, however, requires some knowledge about Git and a
text editor.

Since we are working with Git (see Git section for more information), and want
to publish our content on GitHub (see GitHub section), we have to find a way
to bring our offline work online. For this, you should check out the Git section.

Editors

You know text editors like Word or LibreOffice. However, we want to use plain
text that is readable for machines. This is why we are working with Markdown
to format our plain text.

There are a lot of editors that help you with writing text using the Markdown
syntax. They use syntax highlighting to better understand the structure of
Markdown and can provide a live preview as you type.

Figure 17: Editor

The editor you can see in the screenshot is called VSCodium, which is the open
source version of a popular editor VSCode by Microsoft. In this editor, you
can install plugins that can help you. For example, you can install a plugin that
can render a preview of your LiaScript course in your browser without having to

20

upload your changes. It also has a built-in Git functionality which helps you
publish your changes.

Put your changes online

You could upload your locally edited files to GitHub, either by simply uploading
this file or by editing the file you want to change and replacing that file’s content
with your local content.

The better way, however, is to use Git for this - either by using your editor’s
built-in Git functionality or by using the Git program itself. Please check out
the abundance of free online resources on how to do this.

By playing the video you agree to YouTube retrieving and storing
information about you in the form of cookies.

Immediate update in OERSI

Your OER will be automatically inserted into the OERSI if you fulfill
the requirements listed in the insert your OER into OERSI section.
The resources are updated each night. If you want to see immediate
changes, you can use the (experimental) record updater.

Head to the record updater page on oersi.org. Insert the link to your GitHub
repository or to the generated landing page of your OER.

Figure 18: Record updater

Then, click on update. Your OER should now be updated in the OERSI.

21

https://oersi.org
https://oersi.org/resources/pages/de/record_update/
https://oersi.org

Different formats

After following this tutorial, we have different output formats like
a HTML version, a PDF version and so on. We could, however,
generate all kinds of different formats, for example a course format
like this tutorial.

Below you find a short list of several possible formats your OER could use.

Markdown documents template

This is the template that is described in this tutorial. As you know by now, it
takes your Markdown files, puts them together and generates different formats
from them. These formats are linked to and can be downloaded from the landing
page that is generated using GitHub Actions and GitHub Pages.

Pro:

• Easy setup with our template
• Automatic generation of different formats
• Can include interactive elements
• Always have the newest changes online
• GitHub automatically tracks changes made to your files
• Easy collaboration with others on GitHub
• Customizable with CSS

Con:

• Needs a GitHub account
• Customizing can be tricky

Markdown slides template

The Markdown slides template is very similar to the Markdown documents
template from this tutorial. But instead of creating a single text document, the
slides template creates several slides. For this, you create one Markdown file for
one set of slides and the template generates the slides in both HTML and PDF
format and shows a list of all generated slides together with preview images in a
GitHub Page.

Pro: + Easy automatically generated slides in two formats + Easy setup with
our template + Automatic up to date overview page + Always have the newest
changes online + Automatically tracks changes made to your files + Easy
collaboration with others

Con: - Slides are only partly customizable - Needs a GitHub account

LiaScript

LiaScript takes a markdown file and automatically generates a course format
from it. The tutorial you are currently viewing is actually made with LiaScript!
Or rather, the Markdown file this tutorial is written in is being interpreted by

22

https://github.com/TIBHannover/markdown-documents-template
https://github.com/TIBHannover/markdown-slides-template
https://liascript.github.io

LiaScript, which therewith generated this course. So all you really need is a
Markdown file.

Pro: + Super easy to set up, just need one markdown file somewhere on the
internet! + Runs everywhere + Large number of elements you can use like
graphs, quizzes, . . . + No installation, everything happens live & online +
Easy to click through the different sections + Automatic translation into many
different languages + Interactive elements and extended Markdown can be used
+ Responsive website

Con: - Only online, no download - Depends on one single service - Only one
Markdown file at a time

Static Site Generators

A static site generator generates a static site. Typically, it will be possible to
also write your content using Markdown, but at the same time, you will be able
to edit your layout and include more elements yourself which the static site
generator then uses to create your web page. Of course, this requires some basic
knowledge about HTML, CSS and the static site generator you are using. You
should also be familiar with the command line or using GitHub Actions yourself.

Pro: + Creates a lightweight web page + Very customizable

Con: - Not for complete beginners - you need some knowledge about web
development - Takes longer to get a first version running / more configuration
and technical know-how necessary

JupyterBooks

Jupyter Book is a free and open source tool to create online books. You can
create sections and subsections that you can click through. They are added to a
table of contents, which can be viewed in a sidebar or accessed via a menu. It is
also possible to include executable content. Moreover, you can download your
book in both Markdown and PDF format. You can start out with a template
supplied by the software itself.

Pro: + Creates online books with sections and table of contents to click through
+ Allows lots of configuration and structuring + Supplies download as Markdown
and PDF + Can include executable content

Con: - Not for complete beginners (you will need to run commands from the
command line or create a GitHub Action) - Configuration is done via config files,
which can be tricky to learn if you are unfamiliar with coding

Troubleshooting
Something does not work? Maybe you find your issue right here.

23

https://github.com/collections/static-site-generators
https://jupyterbook.org/en/stable/intro.html

I do not see my changes

You have added your content and your metadata but can not see your changes
in your landing page and generated documents? Following these steps might
help you.

1. Delete your cache and reload your page/document

Often, the old version of the page is still loaded in your browser’s cache. If you
reload the page or document by hitting Ctrl + F5 together, you can reload
your page while deleting the cache of that page. You can also open your page or
document in a new private tab or window, as the browser usually does not use
its cache there.

2. Check your file names and content

Check if your file name contains characters like spaces. These are not allowed
and cause the document generation to break.

Also, ensure that there are no special characters like emojis or other unicode
characters in your documents. Our document processor does not understand
these characters, which also leads to breaking the document generation.

3. Check your media

Sometimes, images or videos can cause the document generation to break.
Usually, this happens when you use an unsupported format. Stick to widespread
formats like png and jpg to be sure.

FAQ
Can I upload non-text files like PDF files?

Yes, you can! Git however won’t be able to track changes made to those files, it
can only track that it was changed.

How can I change how images are displayed?

You can change image size, placement and more by using HTML-tags. HTML is,
like Markdown, a markup language, basically converting plain text into formatted
output.

Change image size:

<img src="path/to/image.png" alt="Image description" style="width:100px";
/>

The src contains the path to your image, the alt contains an image description,
and the style contains the information about the image size. Here, we have set
the width to 100 pixels. You can also set the height (but note that setting a
fixed width and height that does not match the original ratio of the image can
skew it), and of course, change the size how you want.

24

Make text float around an image:

<img src="path/to/image.png" alt="Image description" style="float:
left; margin: 0 20px 20px 0;" />

Again, src contains the path to the image and alt its description. Now in the
style tag, you find two directions: float: left; places your image on the left
and allows other content like text to float around it. The tag margin: 0 20px
20px 0; is about spacing: you can set a margin around your image (or element
in general), leaving that space blank. Here, the values for the margin are sorted
top, right, bottom, left. So in this case, there is a margin of 20 pixels to the
right and to the bottom. This prevents the text to directly “touch” your image,
making it easier to read.

Why are the direct paths to my files different?

You may have encountered links containing https://raw.githubusercontent.com/.
If you are wondering what this means and why GitHub changes your URL this
way, the reason is the following:

When you go through your repository’s files in GitHub, you see them embedded
in the GitHub web page, which lets you do several things like edit, delete, show
its history and so on. So when you have a link to this file, the link points to this
web page and not to the file itself (which is called the raw file). If you want to
access the file only, so the raw file, GitHub allows you to do that by changing
the URL to https://raw.githubusercontent.com/.

How can I create a new folder?

You can not create an empty folder. This means you have to add files in GitHub
in that new folder. Either create a new file and change the path to that new
folder (i.e. instead of creating a new file file.md, write it with a new folder like
newfolder/file.md, a new folder will be automatically created) or upload a
non-empty folder.

Note on reuse
This work and its contents are licensed under CC BY 4.0 unless otherwise
noted. Please cite this work as follows: “OER GitHub Tutorial - Template” by
Sophie Matter, license: CC BY 4.0. The sources of this work are available on
github.com.

25

https://github.com/TIBHannover/oer-github-tutorial-template
https://creativecommons.org/licenses/by/4.0/deed.de
https://github.com/TIBHannover/oer-github-tutorial-template

	Create and publish OER with GitHub
	Quick Start
	1. Create a GitHub account, if you don’t have one yet
	2. Create your project
	3. Fill the project with your content
	4. Generate the OER
	5. Add your metadata
	Done!

	Step by step tutorial
	Requirements
	Create a GitHub account
	Markdown
	Create a project
	Generate output
	Video tutorial
	Fill with content
	How and where to upload your own content
	Ensuring the correct order
	Add your metadata
	Insert your OER in OERSI
	Done!

	Reference
	Configuration options
	Markdown
	Headings
	Markdown elements
	Links to other sections
	Git
	What is Git and why should you use it?
	How Git works
	Working offline
	Editors
	Put your changes online
	Immediate update in OERSI
	Different formats

	Troubleshooting
	I do not see my changes

	FAQ
	Can I upload non-text files like PDF files?
	How can I change how images are displayed?
	Why are the direct paths to my files different?
	How can I create a new folder?

	Note on reuse

