Universitat
Hannover

Knowledge Engineering and Semantic Web Leibniz
i 0
tog: 4

Exercise Sheet: 6
Will be discussed on: June 27,2023

TUTORS:
Yaser Jaradehl Hassan Hussien, and some other ORKG members

QUESTIONS: Please don’t hesitate to ask any questions. Questions help you and your peers.
PRINT: Please consider the environment before printing the exercise.

1 Review Questions

1. Which statements are true or false?

(a) SPARQL stands for “SPARQL Protocol and RDF Query Language”.
True, see slides

(b) SPARQL endpoints expose only one graph.
X Multiple graphs can be exposed, see FROM tag

(¢) SPARQL queries must have prefix definitions.
X Prefixes are syntactic sugar to keep queries readable

(d) SPARQL queries must have the where clause.
X No, but it is better to read

(e) All statements in a SPARQL must be closed by a ’.’
X No, the last one can be without, but again, best practice
Example: PREFIX dbr: <http://dbpedia.org/resource/>
select 7p 7o where {
dbr:Nikola_Tesla ?p 7o .
?0 a <http://www.w3.0rg/2002/07/owl#Class>

}

(f) SPARQL queries can only retrieve variables.
X No, what about count(?var), avg(?var), min(?var), etc.

(g) SPARQL responses are RDF triples.
X Depends on the query, SELECT are given in XML,JSON,CSV/TSV format,
CONSTRUCT: RDF /XML

2 Learning by Doing
Open the DBpedia endpoint in your browser : http://dbpedia.org/sparql/

1. Run the example query :
SELECT DISTINCT ?Concept WHERE [] a ?Concept LIMIT 100

(a) Explain in your own the query. Particularly explain the individual commands.
(SELECT,DISTINCT, WHERE, LIMIT)
Solution: SELECT defines the variable we want to retrieve. Here Concept. DISTINCT will
make the results unique (distinct entries, no duplicates). WHERE defines the graph triple
patter, which searches for a blank node that has a property rdf:type (a) and ?Concept is a
variable, thus it can be anything. LIMIT will only show the first 100 elements that has been
found in the graph.

(b) How could you extend / modify the query to get the next 10 entries.
Solution: OFFSET 100 , LIMIT 10

2. Create a SPARQL query to find all triples about Nikola Tesla.

mailto:jaradeh@l3s.de
mailto:Hassan.Hussien@tib.eu
http://dbpedia.org/sparql/

(a)

Without using prefixes.
Solution: SELECT ?p 7o WHERE {
<http://dbpedia.org/resource/Nikola_Tesla> 7p 7o .

Using prefixes

Solution:

PREFIX dbr: <http://dbpedia.org/resource/>
select 7p 7o where {

dbr:Nikola_Tesla 7p 7o .

}

How can you modify the query so the result will be provided in a triple format.
Solution:

PREFIX dbr: <http://dbpedia.org/resource/> select ?tesla 7p 70 where {
dbr:Nikola_Tesla 7p 7o .

BIND(dbr:Nikola_Tesla AS 7tesla)

}

Return the number of triples associated with Nikola Tesla.
Solution:

PREFIX dbr: <http://dbpedia.org/resource/>

select (COUNT(?p) AS ?pc) WHERE {

dbr:Nikola_Tesla ?p 7o .

}

Create a SPARQL query that will return the individual properties and their counts (given the
subject is Nikola Tesla. Solution:

PREFIX dbr: <http://dbpedia.org/resource/>

select ?7p (COUNT(?p) AS ?pc) WHERE {

dbr:Nikola_Tesla 7p 7o .

}

Create a SPARQL query that will return all different labels for Nikola Tesla Solution:
PREFIX dbr: <http://dbpedia.org/resource/>

SELECT ?lab WHERE

dbr:Nikola_Tesla <http://www.w3.0org/2000/01/rdf-schema#label> ?lab .

}

Consider the following knowledge base about people who work for an exemplary company
and solve the tasks 2 to 4.

O@prefix
O@prefix
O@prefix
Oprefix
Oprefix

ex:pl

ex:p2

ex:<http://example.org#> .
rdf:<http://www.w3.0org/1999/02/22-rdf-syntax-ns#> .
rdfs:<http://www.w3.0rg/2000/01/rdf-schema#> .
xsd:<http://www.w3.0rg/2001/XMLSchemai#>.

owl: <http://www.w3.org/2002/07/owl#>.

ex:name "John"Qen;

ex:salary "23000"""xsd:integer;
ex:birthYear "1989"""xsd:integer;
ex:friendWith ex:p3;

ex:knows ex:p2,ex:p4;
ex:workingStatus "fullTime";
ex:jobTitle ex:Programmer;
ex:nationality ex:American;

ex:email "john@fake.com";
ex:workingProject ex:prl.

ex:name "Jens"Q@de;

ex:salary "43000" " "xsd:integer;
ex:birthYear "1977"""xsd:integer;
ex:knows ex:pl, ex:p3, ex:p4;
ex:workingStatus "fullTime";
ex:jobTitle ex:Manager;

ex

ex

ex:

ex:

ex
ex

ex:nationality ex:German;
ex:workingProject ex:pr2.

:p3 ex:name "Hamed"@de;
ex:salary "8000" " "xsd:integer;
ex:birthYear "1995" " "xsd:integer;
ex:friendWith ex:pl;
ex:knows ex:p2;
ex:workingStatus "partTime";
ex:jobTitle ex:Programmer;
ex:nationality ex:Iranian;
ex:email "hamed@fake.com";
ex:workingProject ex:pr2.

:p4 ex:name "Dean"Q@en;
ex:salary "24000" " "xsd:integer;
ex:birthYear "1963" " "xsd:integer;
ex:knows ex:pl, ex:p2;
ex:workingStatus "Retired";
ex:jobTitle ex:Manager;
ex:nationality ex:American;
ex:workingProject ex:pr2.

prl a ex:Project;

ex:startYear "2013"""xsd:gYear;
ex:supervisor ex:p4;
ex:headWorker ex:pl.

pr2 a ex:Project;

ex:supervisor ex:p2;
ex:advisor ex:p3.

:headWorker rdfs:subClassOf

:friendWith rdfs:subProperty0f

Explain the queries below in your own words

resul

a

ts.

1. PREFIX ex:<http://example.org#>

SELECT
{

?name

?p ex:name 7name;

ex:salary

FILTER

(?salary>15000)}

7salary.

2. PREFIX ex:<http://example.org#>

ASK {

?person exX:name

7name;

ex:salary ?salary;

ex:nationality

ex:German .

FILTER(7salary >= 40000)}

3. PREFIX ex:<http://example.org#>
SELECT (COUNT(?7name) as 7count)

{

7P ex:name 7name;
ex:workingStatus

MINUS{?p

OPTIONAL{?p ex:email
FILTER(!bound(?email))

}

ex:workingStatus

7stat.

7email.}

ex:Manager.
ex:knows;
owl:symmetricProperty.

"Retired"}

and find their

4. PREFIX ex:<http://example.org#>
SELECT (SUM(7salary) as 7sum)
{
?p ex:salary 7salary.
{?p ex:workingStatus 7status.
FILTER(7status="partTime")} UNION
{?p ex:workingStatus 7status.
FILTER(7status="fullTime")}
}

5. PREFIX ex:<http://example.org#>

SELECT DISTINCT 7p ?job 7name2

{

?p ex:name 7name;
ex:jobTitle 7job;
ex:knows 7p2.

?p2 ex:name 7name2.

FILTER(lang(?name2)="en"

}

Solution:

1. Return the name of people with salary more than 15000.
Result:

| "John"@en |
| "Jens"@de |
| "Dean"@en |

2. Ask if there is a German person with name who has salary more than or equal to 40000.
Result: yes (for entry Jens)

3. Return the number of people with name who are working people (not retired) who don’t have email.
Result:

4. Return sum of salaries of fullTime and partTime working people.
Result:

5. Return people (without duplication) with their job titles and the English name of people whom
they know.
Result:

ex:pl	ex:Programmer	"Dean"@en
ex:p4	ex:Manager	"John"@en
ex:p2	ex:Manager	"John"@en
ex:p2	ex:Manager	"Dean"@en

Write SPARQL queries to answer the following requests.
1. The average age of all Working Employees in the year 2016.
. The salary and email (if it’s given) of American employees.
. Names of people with a salary of less than 20,000 who are not American.

. Names of supervisors of projects which American people work in.

Tt s W N

. Does any American worker aged over 30 works for the company who is payed more than 30000
annually?

Solution:

1. PREFIX ex:<http://example.org#>
SELECT (AVG(2016 - ?byear) AS 7average)
{
?p ex:birthYear 7byear;
ex:workingStatus 7status.
FILTER(7status != "Retired")
}

2. PREFIX ex:<http://example.org#>

SELECT ?7p 7email 7salary

{

?p ex:salary 7salary;
ex:nationality “nationality.

FILTER (7nationality = ex:American)

OPTIONAL {?p ex:email ?email}

}

3. PREFIX ex:<http://example.org#>
SELECT 7name
{
P ex:name ?name;
ex:nationality ?nationality;
ex:salary 7salary.
FILTER(7salary < 20000 && 7nationality != ex:American)
b

4. PREFIX ex:<http://example.org#>
SELECT ?7name
{
?prj ex:supervisor 7pl.
7p1 ex:name 7name.
?p2 ex:nationality = 7nationality;

ex:workingProject 7prj.

FILTER(?7nationality = ex:American)

}

5. PREFIX ex:<http://example.org#>
ASK {
7P ex:nationality ex:American;
ex:birthYear ?year;

ex:salary 7salary.
FILTER(?salary >= 30000 && (2018 - ?year > 30))
}

	Review Questions
	Learning by Doing
	Explain the queries below in your own words and find their results.
	Write SPARQL queries to answer the following requests.

