Knowledge Engineering and Semantic Web

11 Leibniz 102 Universität 1004 Hannover

Exercise Sheet: 4 Will be discussed on: May 23, 2023

TUTORS:

Yaser Jaradeh, Hassan Hussien, and some other ORKG members

QUESTIONS: Please don't hesitate to ask any questions. Questions help you and your peers. **PRINT**: Please consider the environment before printing the exercise.

1 Review questions

- 1. Semantics and Syntax : which statement is correct?
 - (a) Syntax: meaning of the character strings
 × Syntax: character strings without meaning
 - (b) **Semantics:** meaning of the character strings
- 2. Implicit Knowledge: which statement is correct?

```
ex:ExampleBook rdf:type ex:TextBook .
ex:TextBook rdfs:subClassOf ex:Book .
ex:PrintMedia rdfs:subClassOf ex:Media .
```

- (c) ex:ExampleBook rdf:type ex:Book. \checkmark true
- 3. rdfs:subClassOf "characteristics"
 - (a) symmetric \times A subClass of B >> does not mean B subClassOf A
 - (b) transitive \checkmark true
 - (c) reflexive \checkmark true A subclass of A

2 Semantic Entailment Rules

```
Write down the semantic entailment rules.

Note:

if a \eta b \in K and b \eta c \in K then K \leftarrow K \cup \{a \eta c\}

also written as :\frac{a \eta b b \eta b}{a \eta c}
```

Notation Triples : < subject predicate object >

a and $b \cong$ any URI (predicates)

_ : $n \mathrel{\widehat{=}} \operatorname{blank}$ node ID

u and $v \cong$ any URI or blank node ID for (subject)

x and $y \cong$ any URI, or blank node ID or literals (object)

 $l \cong$ any literal

Simple Entailment Rules

Rule	Formula
Simple	Colution , $u a x$.
Entailment 1	Solution: $\frac{1}{u \ a \ (n \)}$
Simple	$\mathbf{S} = 1 = \mathbf{A}^{\dagger} = \mathbf{I} = \mathbf{A}^{\dagger} \mathbf{A}^{\dagger} \mathbf{X}$
Entailment 2	Solution: $\overline{_:n \ a \ x}$.

Explain in own words the two rules. Rule 1:

Solution: We can replace **x** through a blank node (the object position in the triple) Rule 2:

 $\underline{\textbf{Solution:}}$ We can replace u through a blank node (the subject position in the triple) RDF Entailment Rules

Rule	Formula
RDF axioms	Solution: $\frac{1}{u \ a \ x}$
Literal	
Grounding	Solution: $\frac{u}{u} \frac{u}{a} $
	where :_n does not yet occur in the graph
RDF Rule 1	Solution: $\frac{u \ a \ y}{a \ rdf:type \ rdf:Property}$.
RDF Rule 2	Solution: $\frac{u \ a \ l}{\therefore n \ rdf:type \ rdf: XMLLiteral}$, where \therefore :n has been introduced through LG rule

RDFS Entailment Rules

Rule	Formula
RDFS axioms	Solution: $\frac{u^{a x}}{u^{a x}}$ for all RDFS axiomatic triples u a x
RDFS Rule 1	Solution: $\frac{u \ a \ l}{\therefore n \ rdf:type \ rdfs:Literal}$. whit :_n as usual
RDFS Rule 2 (domain)	Solution: $\frac{a \ rdfs:domain \ x \ . \ u \ a \ y \ .}{u \ rdf:type \ x \ .}$
RDFS Rule 2 (range)	Solution: $\frac{a \ rdfs:range \ x \ . \ u \ a \ v \ .}{v \ rdf:type \ x \ .}$
RDFS Rule 4a	Solution: $\frac{u \ a \ x}{u \ rdf:type \ rdfs:Resource}$.
RDFS Rule 4b	Solution: $\frac{u \ a \ v}{v \ rdf: type \ rdfs: Resource}$.
RDFS Rule 5	Solution: $\frac{u \ rdfs:subPropertyOf \ v \ . \ v \ rdfs:subPropertyOf \ x \ .}{u \ rdfs:subPropertyOf \ x \ .}$
RDFS Rule 6	Solution: $\frac{u \ rdf:type \ rdf:Property}{u \ rdfs:subPropertyOf \ u}$.
RDFS Rule 7	Solution: $\frac{a \ rdfs:subPropertyOf \ b \ . \ u \ a \ y \ .}{u \ b \ y}$
RDFS Rule 8	Solution: $\frac{u \ rdf:type \ rdfs:Class}{u \ rdfs:subClassOf \ rdfs:Resource}$.
RDFS Rule 9	Solution: $\frac{u \ rdfs:subClassOf \ x \ . \ v \ rdf:type \ u \ .}{u \ rdf:type \ x \ .}$
RDFS Rule 10	Solution: $\frac{u \ rdf:type \ rdfs:Class}{u \ rdfs:subClassOf \ u}$.
RDFS Rule 11	$\underline{\text{Solution:}} \xrightarrow{u \ rdfs:subClassOf \ v \ . \ v \ rdfs:subClassOf \ x \ .}_{u \ rdfs:subClassOf \ x \ .}$
RDFS Rule 12	Solution: $\frac{u \ rdf:type \ rdfs:ContainerMemberShipProperty}{u \ rdfs:subPropertyOf \ rdfs:member}$.
RDFS Rule 13	Solution: $\frac{u \ rdf:type \ rdfs:Datatype}{u \ rdfs:subClassOf \ rdfs:Literal}$.

3 Inference

1. Hierarchy of properties: Select the correct inferences among the following ones.

a)	:a :p1 :b .	c) :a :p1 :b .	
	:a :p2 :c .	:p2 rdfs:subPropertyOf :p1 .	
	->	->	
	:b rdfs:subPropertyOf :c .	:a :p2 :b .	
b)	:a :p1 :b .	d) :p1 rdfs:subPropertyOf :p2 .	,
	:b rdf:type :C .	:a :p1 :b .	
	->	->	
	:p1 rdfs:range :C .	:a :p2 :b .	

Solution:

- a) X :a, :b, and :c are entities not properties, so :b rdfs:subPropertyOf :c is completely wrong, as domain and range of rdfs:subPropertyOf are rdf:Property.
- b) \times :b can have too many types which are irrelevant to range of :p1.
- c) × With :a :p2 :b and :p2 :subPropertyOf :p1, we can infer :a :p1 :b, not vice versa.
- d) \checkmark Look at explanation of choice c.
- 2. Hierarchy of Classes: Select the correct inferences among the following ones.

```
a) :A rdfs:subClassOf :B .
                                        c) :p1 rdfs:domain :A .
  :c rdf:type :A .
                                           :p1 rdfs:range :C .
                                           :p2 rdfs:domain :B .
  ->
  :c rdf:type :B .
                                           :p2 rdfs:range :D .
                                           :p1 rdfs:subPropertyOf :p2 .
                                           ->
                                           :A rdfs:subClassOf :B .
                                           :C rdfs:subClassOf :D .
b) :a :p1 :b .
  :a :p2 :c .
  :b rdf:type :B .
                                        d) :a :p1 :b .
  :c rdf:type :C .
                                           :p2 rdfs:domain :C .
  :B rdfs:subClassOf :C .
                                           :p1 rdfs:subPropertyOf :p2.
  ->
                                           ->
  :p1 rdfs:subPropertyOf :p2 .
                                           :a rdf:type :C .
```

Solution:

- a) \checkmark Obvious by definition of rdfs:subClassOf
- b) \times It's totally irrelevant inference.
- c) \times Not all members of domain set necessarily contribute in a property relations. So there could be some members of :A which are not contained in :B. Similar explanation holds for :C and :D
- d) ✓ :a :p1 :c and :p1 rdfs:subPropertyOf :p2 entail: :a :p2 :b and so :a rdf:type :C as :C is the domain of :p2.
- 3. Equivalence of Classes: Select the correct inferences among the following ones.

a)	:A rdfs:subClassOf	:B .	b) : <i>I</i>	rdfs:subClassOf	:B	
	:B rdfs:subClassOf	:C .	:E	3 rdfs:subClassOf	:C	
	:C rdfs:subClassOf	:D .	:0	: rdf:type :A .		
	:D rdfs:subClassOf	:A .	->	•		
	->		:0	: rdf:type :C .		
	:A , :B , :C , :D					
	are equivalent clas	sses.				

```
c) :A rdfs:subClassOf :B .
    :B rdfs:subClassOf :A .
    :c rdf:type :A .
    ->
    :c and :d are equivalent.
    />
    :c and :d are equivalent.
    />
    :c and :d are equivalent.
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
    //
```

Solution:

- a) \checkmark :A rdfs:subClassOf :B and :B rdfs:subClassOf :C entails :A rdfs:subClassOf :C. Similarly we can infer: :A rdfs:subClassOf :D. And then by :A rdfs:subClassOf :D and :D rdfs:subClassOf :A we can entail that :A and :D are equivalence. Similar reasoning can be applied for the other equivalencies.
- b) b) <> :c rdf:type :A and :A rdfs:subClassOf :B so it would be entailed that :a rdf:type :B. Similarly we can infer :a rdf:type :C.
- c) X Equivalence of two class doesn't mean that all members of each class are the same.
- d) × Not all members of domain and range sets of property P are related to each other with property P. So there are some members of :A and :C which are not contributed in relation defined by P, so they be not contained in :A and :A respectively.

4 Consider the following statements:

- a) Represent them in RDF Turtle serialization.
- b) Select the correct ones.
- $\begin{array}{ll} 1. \ < \mathit{rdfs}: \mathit{subClassOf}^I, \mathit{rdfs}: \mathit{Resource}^I > \in \ I_{EXT}(\mathit{rdfs}: \mathit{domain}^I).\\ \times \ \mathsf{rdfs}: \mathsf{subClassOf} & \mathsf{rdfs}: \mathsf{domain} & \mathsf{rdfs}: \mathsf{Resource}., \ \mathbf{The\ domain\ of\ rdfs}: \mathsf{subClassOf\ is\ rdfs}: \mathsf{Class} \end{array}$
- 2. $< rdf : List^{I}, rdf : rest^{I} > \in I_{EXT}(rdfs : domain^{I}).$ \times rdf:List rdfs:domain rdf:rest., Subject should be replaced with object.
- 3. $I_{CEXT}(rdfs: Class^{I}) \subseteq I_{CEXT}(rdfs: Resource^{I}).$ \checkmark rdfs:Class rdfs:subClassOf rdfs:Resource.
- 4. $< rdfs : domain^{I}, rdf : Property^{I} > \in I_{EXT}(rdf : type^{I}).$ \checkmark rdfs:domain rdf:type rdf:Property.
- 5. If $\langle x, y \rangle \in I_{EXT}(rdfs: domain^{I})$ and $\langle u, v \rangle \in I_{EXT}(x) \rightarrow u \in I_{CEXT}(x)$. \times rdfs:domain :y. and :u :x :v. \rightarrow :u rdf:type :x., False, as :u is in type of :y not :x.
- 5 For the following knowledge base, indicate which statement can be entailed. Prove the true answers with proof-theoretic semantics.

```
@prefix ex: <http://example.org> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
```

ex:dog rdfs:subClassOf ex:animal .
ex:horse rdfs:subClassOf ex:creature .

```
ex:isEnemyOf rdfs:subPropertyOf ex:knows .
ex:isEnemyOf rdfs:domain ex:person;
rdfs:range ex:person .
ex:isFriendOf rdfs:subPropertyOf ex:knows .
```

ex:creature .

rdfs:subClassOf

```
ex:LuckLuke a ex:person.
ex:JollyJumper a ex:horse.
ex:Rantanplan a ex:dog.
```

```
ex:LuckyLuke ex:isFriendOf ex:JollyJumper .
ex:JollyJumper ex:isFriendOf ex:Rantanplan .
ex:LuckyLuke ex:isEnemyOf exJoeDalton .
```

Statements:

ex:person

- 1. ex:Rantanplan a ex:creature.
 X Type of ex:Rantanplan is ex:dog and there is no triple to show that dog is subclass of ex:creature or any subclass of this class.
- 2. ex:Rantanplan ex:isFriendOf ex:JollyJumper.
 X The triple ex:JollyJumper ex:isFriendOf ex:Rantanplan. doesn't infer that ex:RantanPlan is also friend of ex:JollyJumper, as there is no triple which entails ex:isFriendOf is symmetric property (this property is not covered by RDFS semantic, and is part of OWL ontology). Based on RDFS semantic we can say ex:RantanPlan ex:isFriendOf ex:JollyJumper. only if have this triple in our knowledge base. In RDFS semantic we can point on statements and talk about them, but, we cannot make rules about them.
- 4. ex:LuckyLuke ex:knows ex:JoeDalton.
 According to our knowledge base we know ex:LuckyLuke ex:isEnemyOf exJoeDalton.
 And also we know ex:isEnemyOf rdfs:subPropertyOf ex:knows. So ex:LuckLuke ex:knows ex:JoeDalton. is inferred.
- 5. ex:JoeDalton ex:isEnemyOf ex:LuckyLuke.X Similar reasoning with second and third statements.
- 6. ex:JoeDalton a ex:creature.
 ✓ ex:JoeDalton is a ex:person as the range of ex:isEnemyOf is ex:Person. And as ex:person is subclass of ex:creature, so ex:JoeDalton is ex:creature.